@Override public SymmetricKey createKey() { KeyGenerator kgen; try { kgen = KeyGenerator.getInstance("AES"); kgen.init(256); final SecretKey skey = kgen.generateKey(); return new AES256SymmetricKey(skey.getEncoded()); } catch (final NoSuchAlgorithmException e) { throw new RuntimeException(e); } }
@SuppressWarnings("restriction") public String getencrypt(String p) throws Exception { String encrypted = ""; try { KeyGenerator kgen = KeyGenerator.getInstance("AES"); kgen.init(128, new SecureRandom(KEY.getBytes())); SecretKey skey = kgen.generateKey(); byte[] raw = skey.getEncoded(); SecretKeySpec skeySpec = new SecretKeySpec(raw, "AES"); Cipher cipher = Cipher.getInstance("AES"); cipher.init(Cipher.ENCRYPT_MODE, skeySpec); byte[] encrypt = cipher.doFinal(p.getBytes()); encrypted = new BASE64Encoder().encodeBuffer(encrypt).trim(); // System.out.println("encrypted="+encrypted); } // try catch (Exception e) { System.out.println(e); } return encrypted; // return 密文 }
public static byte[] func_75895_a(String p_75895_0_, PublicKey p_75895_1_, SecretKey p_75895_2_) { try { return func_75893_a( "SHA-1", new byte[][] { p_75895_0_.getBytes("ISO_8859_1"), p_75895_2_.getEncoded(), p_75895_1_.getEncoded() }); } catch (UnsupportedEncodingException unsupportedencodingexception) { unsupportedencodingexception.printStackTrace(); } return null; }
public String getdecrypt(String base64) throws Exception { String decrypted = ""; try { @SuppressWarnings("restriction") byte[] b = new BASE64Decoder().decodeBuffer(base64); KeyGenerator kgen2 = KeyGenerator.getInstance("AES"); kgen2.init(128, new SecureRandom(KEY.getBytes())); SecretKey skey2 = kgen2.generateKey(); byte[] raw2 = skey2.getEncoded(); SecretKeySpec skeySpec2 = new SecretKeySpec(raw2, "AES"); Cipher cipher2 = Cipher.getInstance("AES"); cipher2.init(Cipher.DECRYPT_MODE, skeySpec2); byte[] decrypt = cipher2.doFinal(b); decrypted = new String(decrypt); // System.out.println("decrypted="+decrypted); } catch (Exception e) { System.out.println(e); } return decrypted; }
/** * Reads the raw data from the input File, encrypts and saves its contents to the output File, and * then save the raw data of the SecretKey used to the SecretKey File. * * @param input the File to be read and encrypted * @param output the File the encrypted data will be saved to * @param keyFile the File the SecretKey data will be saved to * @throws InvalidKeyException if the given key is inappropriate for initializing this cipher, or * if this cipher is being initialized for decryption and requires algorithm parameters that * cannot be determined from the given key, or if the given key has a keysize that exceeds the * maximum allowable keysize (as determined from the configured jurisdiction policy files). * @throws IOException if any of the files do not exist, are a directory rather than a regular * file, or for some other reason cannot be opened for reading or if an I/O error occurs. * @throws IllegalBlockSizeException if the cipher is a block cipher, no padding has been * requested (only in encryption mode), and the total input length of the data processed by * this cipher is not a multiple of block size; or if this encryption algorithm is unable to * process the input data provided. * @throws BadPaddingException if the cipher is in decryption mode, and (un)padding has been * requested, but the decrypted data is not bounded by the appropriate padding bytes */ public void encrypt(File input, File output, File keyFile) throws InvalidKeyException, IOException, IllegalBlockSizeException, BadPaddingException { if (debug) { System.out.println("Initializing encryption..."); } cipher.init(Cipher.ENCRYPT_MODE, key); FileInputStream fis = null; try { fis = new FileInputStream(input); data = new byte[(int) input.length()]; if (debug) { System.out.println("Reading data..."); } fis.read(data); } finally { if (fis != null) { fis.close(); } } if (debug) { System.out.println("Encrypting data..."); } data = cipher.doFinal(data); FileOutputStream fos = null; try { fos = new FileOutputStream(output); if (debug) { System.out.println("Saving data..."); } fos.write(data); } finally { if (fos != null) { fos.close(); } } if (debug) { System.out.println("Saving key..."); } data = key.getEncoded(); fos = null; try { fos = new FileOutputStream(keyFile); fos.write(data); } finally { if (fos != null) { fos.close(); } } if (debug) { System.out.println("Encryption complete!"); } data = null; }
public static void main(String[] args) throws Exception { // prompt user to enter a port number System.out.print("Enter the port number: "); Scanner scan = new Scanner(System.in); int port = scan.nextInt(); scan.nextLine(); System.out.print("Enter the host name: "); String hostName = scan.nextLine(); // Initialize a key pair generator with the SKIP parameters we sepcified, and genrating a pair // This will take a while: 5...15 seconrds System.out.println("Generating a Diffie-Hellman keypair: "); KeyPairGenerator kpg = KeyPairGenerator.getInstance("DH"); kpg.initialize(PARAMETER_SPEC); KeyPair keyPair = kpg.genKeyPair(); System.out.println("key pair has been made..."); // one the key pair has been generated, we want to listen on // a given port for a connection to come in // once we get a connection, we will get two streams, One for input // and one for output // open a port and wait for a connection ServerSocket ss = new ServerSocket(port); System.out.println("Listeining on port " + port + " ..."); Socket socket = ss.accept(); // use to output and input primitive data type DataOutputStream out = new DataOutputStream(socket.getOutputStream()); // next thing to do is send our public key and receive client's // this corresponds to server step 3 and step 4 in the diagram System.out.println("Sending my public key..."); byte[] keyBytes = keyPair.getPublic().getEncoded(); out.writeInt(keyBytes.length); out.write(keyBytes); System.out.println("Server public key bytes: " + CryptoUtils.toHex(keyBytes)); // receive the client's public key System.out.println("Receiving client's public key..."); DataInputStream in = new DataInputStream(socket.getInputStream()); keyBytes = new byte[in.readInt()]; in.readFully(keyBytes); // create client's public key KeyFactory kf = KeyFactory.getInstance("DH"); X509EncodedKeySpec x509Spec = new X509EncodedKeySpec(keyBytes); PublicKey clientPublicKey = kf.generatePublic(x509Spec); // print out client's public key bytes System.out.println( "Client public key bytes: " + CryptoUtils.toHex(clientPublicKey.getEncoded())); // we can now use the client's public key and // our own private key to perform the key agreement System.out.println("Performing the key agreement ... "); KeyAgreement ka = KeyAgreement.getInstance("DH"); ka.init(keyPair.getPrivate()); ka.doPhase(clientPublicKey, true); // in a chat application, each character is sendt over the wire, separetly encrypted, // Instead of using ECB, we are goin to use CFB, with a block size of 8 bits(1byte) // to send each character. We will encrypt the same character in a different way // each time. But in order to use CFB8, we need an IVof 8 bytes. We will create // that IV randomly and and send it to the client. It doesn't matter if somoene // eavesdrops on the IV when it is sent over the wire. it's not sensitive info // creating the IV and sending it corresponds to step 6 and 7 byte[] iv = new byte[8]; SecureRandom sr = new SecureRandom(); sr.nextBytes(iv); out.write(iv); // we generate the secret byte array we share with the client and use it // to create the session key (Step 8) byte[] sessionKeyBytes = ka.generateSecret(); // create the session key SecretKeyFactory skf = SecretKeyFactory.getInstance("DESede"); DESedeKeySpec DESedeSpec = new DESedeKeySpec(sessionKeyBytes); SecretKey sessionKey = skf.generateSecret(DESedeSpec); // printout session key bytes System.out.println("Session key bytes: " + CryptoUtils.toHex(sessionKey.getEncoded())); // now use tha that session key and IV to create a CipherInputStream. We will use them to read // all character // that are sent to us by the client System.out.println("Creating the cipher stream ..."); Cipher decrypter = Cipher.getInstance("DESede/CFB8/NoPadding"); IvParameterSpec spec = new IvParameterSpec(iv); decrypter.init(Cipher.DECRYPT_MODE, sessionKey, spec); CipherInputStream cipherIn = new CipherInputStream(socket.getInputStream(), decrypter); // we just keep reading the input and print int to the screen, until -1 sent over int theCharacter = 0; theCharacter = cipherIn.read(); while (theCharacter != -1) { System.out.print((char) theCharacter); theCharacter = cipherIn.read(); } // once -1 is received we want to close up our stream and exit cipherIn.close(); in.close(); out.close(); socket.close(); }
/* * Calculate the keys needed for this connection, once the session's * master secret has been calculated. Uses the master key and nonces; * the amount of keying material generated is a function of the cipher * suite that's been negotiated. * * This gets called both on the "full handshake" (where we exchanged * a premaster secret and started a new session) as well as on the * "fast handshake" (where we just resumed a pre-existing session). */ void calculateConnectionKeys(SecretKey masterKey) { /* * For both the read and write sides of the protocol, we use the * master to generate MAC secrets and cipher keying material. Block * ciphers need initialization vectors, which we also generate. * * First we figure out how much keying material is needed. */ int hashSize = cipherSuite.macAlg.size; boolean is_exportable = cipherSuite.exportable; BulkCipher cipher = cipherSuite.cipher; int expandedKeySize = is_exportable ? cipher.expandedKeySize : 0; // Which algs/params do we need to use? String keyMaterialAlg; PRF prf; if (protocolVersion.v >= ProtocolVersion.TLS12.v) { keyMaterialAlg = "SunTls12KeyMaterial"; prf = cipherSuite.prfAlg; } else { keyMaterialAlg = "SunTlsKeyMaterial"; prf = P_NONE; } String prfHashAlg = prf.getPRFHashAlg(); int prfHashLength = prf.getPRFHashLength(); int prfBlockSize = prf.getPRFBlockSize(); TlsKeyMaterialParameterSpec spec = new TlsKeyMaterialParameterSpec( masterKey, protocolVersion.major, protocolVersion.minor, clnt_random.random_bytes, svr_random.random_bytes, cipher.algorithm, cipher.keySize, expandedKeySize, cipher.ivSize, hashSize, prfHashAlg, prfHashLength, prfBlockSize); try { KeyGenerator kg = JsseJce.getKeyGenerator(keyMaterialAlg); kg.init(spec); TlsKeyMaterialSpec keySpec = (TlsKeyMaterialSpec) kg.generateKey(); clntWriteKey = keySpec.getClientCipherKey(); svrWriteKey = keySpec.getServerCipherKey(); // Return null if IVs are not supposed to be generated. // e.g. TLS 1.1+. clntWriteIV = keySpec.getClientIv(); svrWriteIV = keySpec.getServerIv(); clntMacSecret = keySpec.getClientMacKey(); svrMacSecret = keySpec.getServerMacKey(); } catch (GeneralSecurityException e) { throw new ProviderException(e); } // // Dump the connection keys as they're generated. // if (debug != null && Debug.isOn("keygen")) { synchronized (System.out) { HexDumpEncoder dump = new HexDumpEncoder(); System.out.println("CONNECTION KEYGEN:"); // Inputs: System.out.println("Client Nonce:"); printHex(dump, clnt_random.random_bytes); System.out.println("Server Nonce:"); printHex(dump, svr_random.random_bytes); System.out.println("Master Secret:"); printHex(dump, masterKey.getEncoded()); // Outputs: System.out.println("Client MAC write Secret:"); printHex(dump, clntMacSecret.getEncoded()); System.out.println("Server MAC write Secret:"); printHex(dump, svrMacSecret.getEncoded()); if (clntWriteKey != null) { System.out.println("Client write key:"); printHex(dump, clntWriteKey.getEncoded()); System.out.println("Server write key:"); printHex(dump, svrWriteKey.getEncoded()); } else { System.out.println("... no encryption keys used"); } if (clntWriteIV != null) { System.out.println("Client write IV:"); printHex(dump, clntWriteIV.getIV()); System.out.println("Server write IV:"); printHex(dump, svrWriteIV.getIV()); } else { if (protocolVersion.v >= ProtocolVersion.TLS11.v) { System.out.println("... no IV derived for this protocol"); } else { System.out.println("... no IV used for this cipher"); } } System.out.flush(); } } }
/* * Calculate the master secret from its various components. This is * used for key exchange by all cipher suites. * * The master secret is the catenation of three MD5 hashes, each * consisting of the pre-master secret and a SHA1 hash. Those three * SHA1 hashes are of (different) constant strings, the pre-master * secret, and the nonces provided by the client and the server. */ private SecretKey calculateMasterSecret( SecretKey preMasterSecret, ProtocolVersion requestedVersion) { if (debug != null && Debug.isOn("keygen")) { HexDumpEncoder dump = new HexDumpEncoder(); System.out.println("SESSION KEYGEN:"); System.out.println("PreMaster Secret:"); printHex(dump, preMasterSecret.getEncoded()); // Nonces are dumped with connection keygen, no // benefit to doing it twice } // What algs/params do we need to use? String masterAlg; PRF prf; if (protocolVersion.v >= ProtocolVersion.TLS12.v) { masterAlg = "SunTls12MasterSecret"; prf = cipherSuite.prfAlg; } else { masterAlg = "SunTlsMasterSecret"; prf = P_NONE; } String prfHashAlg = prf.getPRFHashAlg(); int prfHashLength = prf.getPRFHashLength(); int prfBlockSize = prf.getPRFBlockSize(); TlsMasterSecretParameterSpec spec = new TlsMasterSecretParameterSpec( preMasterSecret, protocolVersion.major, protocolVersion.minor, clnt_random.random_bytes, svr_random.random_bytes, prfHashAlg, prfHashLength, prfBlockSize); SecretKey masterSecret; try { KeyGenerator kg = JsseJce.getKeyGenerator(masterAlg); kg.init(spec); masterSecret = kg.generateKey(); } catch (GeneralSecurityException e) { // For RSA premaster secrets, do not signal a protocol error // due to the Bleichenbacher attack. See comments further down. if (!preMasterSecret.getAlgorithm().equals("TlsRsaPremasterSecret")) { throw new ProviderException(e); } if (debug != null && Debug.isOn("handshake")) { System.out.println("RSA master secret generation error:"); e.printStackTrace(System.out); System.out.println("Generating new random premaster secret"); } if (requestedVersion != null) { preMasterSecret = RSAClientKeyExchange.generateDummySecret(requestedVersion); } else { preMasterSecret = RSAClientKeyExchange.generateDummySecret(protocolVersion); } // recursive call with new premaster secret return calculateMasterSecret(preMasterSecret, null); } // if no version check requested (client side handshake), or version // information is not available (not an RSA premaster secret), // return master secret immediately. if ((requestedVersion == null) || !(masterSecret instanceof TlsMasterSecret)) { return masterSecret; } // we have checked the ClientKeyExchange message when reading TLS // record, the following check is necessary to ensure that // JCE provider does not ignore the checking, or the previous // checking process bypassed the premaster secret version checking. TlsMasterSecret tlsKey = (TlsMasterSecret) masterSecret; int major = tlsKey.getMajorVersion(); int minor = tlsKey.getMinorVersion(); if ((major < 0) || (minor < 0)) { return masterSecret; } // check if the premaster secret version is ok // the specification says that it must be the maximum version supported // by the client from its ClientHello message. However, many // implementations send the negotiated version, so accept both // for SSL v3.0 and TLS v1.0. // NOTE that we may be comparing two unsupported version numbers, which // is why we cannot use object reference equality in this special case. ProtocolVersion premasterVersion = ProtocolVersion.valueOf(major, minor); boolean versionMismatch = (premasterVersion.v != requestedVersion.v); /* * we never checked the client_version in server side * for TLS v1.0 and SSL v3.0. For compatibility, we * maintain this behavior. */ if (versionMismatch && requestedVersion.v <= ProtocolVersion.TLS10.v) { versionMismatch = (premasterVersion.v != protocolVersion.v); } if (versionMismatch == false) { // check passed, return key return masterSecret; } // Due to the Bleichenbacher attack, do not signal a protocol error. // Generate a random premaster secret and continue with the handshake, // which will fail when verifying the finished messages. // For more information, see comments in PreMasterSecret. if (debug != null && Debug.isOn("handshake")) { System.out.println( "RSA PreMasterSecret version error: expected" + protocolVersion + " or " + requestedVersion + ", decrypted: " + premasterVersion); System.out.println("Generating new random premaster secret"); } preMasterSecret = RSAClientKeyExchange.generateDummySecret(requestedVersion); // recursive call with new premaster secret return calculateMasterSecret(preMasterSecret, null); }