protected void read(DataInputStream s) { try { ref = new WeakReference<DataBuffer>(this, Nd4j.bufferRefQueue()); referencing = Collections.synchronizedSet(new HashSet<String>()); dirty = new AtomicBoolean(false); allocationMode = AllocationMode.valueOf(s.readUTF()); length = s.readInt(); Type t = Type.valueOf(s.readUTF()); if (t == Type.DOUBLE) { if (allocationMode == AllocationMode.HEAP) { if (this.dataType() == Type.FLOAT) { // DataBuffer type // double -> float floatData = new float[length()]; } else if (this.dataType() == Type.DOUBLE) { // double -> double doubleData = new double[length()]; } else { // double -> int intData = new int[length()]; } for (int i = 0; i < length(); i++) { put(i, s.readDouble()); } } else { wrappedBuffer = ByteBuffer.allocateDirect(length() * getElementSize()); wrappedBuffer.order(ByteOrder.nativeOrder()); for (int i = 0; i < length(); i++) { put(i, s.readDouble()); } } } else { if (allocationMode == AllocationMode.HEAP) { if (this.dataType() == Type.FLOAT) { // DataBuffer type // float -> float floatData = new float[length()]; } else if (this.dataType() == Type.DOUBLE) { // float -> double doubleData = new double[length()]; } else { // float-> int intData = new int[length()]; } for (int i = 0; i < length(); i++) { put(i, s.readFloat()); } } else { wrappedBuffer = ByteBuffer.allocateDirect(length() * getElementSize()); wrappedBuffer.order(ByteOrder.nativeOrder()); for (int i = 0; i < length(); i++) { put(i, s.readFloat()); } } } } catch (Exception e) { throw new RuntimeException(e); } }
/** * Create a data buffer from the given length * * @param buffer * @param length */ public BaseDataBuffer(ByteBuffer buffer, int length) { allocationMode = Nd4j.alloc; this.length = length; buffer.order(ByteOrder.nativeOrder()); if (allocationMode() == AllocationMode.DIRECT) { this.wrappedBuffer = buffer; } else if (dataType() == Type.INT) { intData = new int[length]; IntBuffer intBuffer = buffer.asIntBuffer(); for (int i = 0; i < length; i++) { intData[i] = intBuffer.get(i); } } else if (dataType() == Type.DOUBLE) { doubleData = new double[length]; DoubleBuffer doubleBuffer = buffer.asDoubleBuffer(); for (int i = 0; i < length; i++) { doubleData[i] = doubleBuffer.get(i); } } else if (dataType() == Type.FLOAT) { floatData = new float[length]; FloatBuffer floatBuffer = buffer.asFloatBuffer(); for (int i = 0; i < length; i++) { floatData[i] = floatBuffer.get(i); } } }
/** * Tries to start server with given parameters. * * @param hostAddr Host on which server should be bound. * @param port Port on which server should be bound. * @param lsnr Server message listener. * @param parser Server message parser. * @param sslCtx SSL context in case if SSL is enabled. * @param cfg Configuration for other parameters. * @return {@code True} if server successfully started, {@code false} if port is used and server * was unable to start. */ private boolean startTcpServer( InetAddress hostAddr, int port, GridNioServerListener<GridClientMessage> lsnr, GridNioParser parser, @Nullable SSLContext sslCtx, GridConfiguration cfg) { try { GridNioFilter codec = new GridNioCodecFilter(parser, log, false); GridNioFilter[] filters; if (sslCtx != null) { GridNioSslFilter sslFilter = new GridNioSslFilter(sslCtx, log); boolean auth = cfg.isRestTcpSslClientAuth(); sslFilter.wantClientAuth(auth); sslFilter.needClientAuth(auth); filters = new GridNioFilter[] {codec, sslFilter}; } else filters = new GridNioFilter[] {codec}; srv = GridNioServer.<GridClientMessage>builder() .address(hostAddr) .port(port) .listener(lsnr) .logger(log) .selectorCount(cfg.getRestTcpSelectorCount()) .gridName(ctx.gridName()) .tcpNoDelay(cfg.isRestTcpNoDelay()) .directBuffer(cfg.isRestTcpDirectBuffer()) .byteOrder(ByteOrder.nativeOrder()) .socketSendBufferSize(cfg.getRestTcpSendBufferSize()) .socketReceiveBufferSize(cfg.getRestTcpReceiveBufferSize()) .sendQueueLimit(cfg.getRestTcpSendQueueLimit()) .filters(filters) .build(); srv.idleTimeout(cfg.getRestIdleTimeout()); srv.start(); ctx.ports().registerPort(port, GridPortProtocol.TCP, getClass()); return true; } catch (GridException e) { if (log.isDebugEnabled()) log.debug( "Failed to start " + name() + " protocol on port " + port + ": " + e.getMessage()); return false; } }
/** * @param data * @param copy */ public BaseDataBuffer(int[] data, boolean copy) { allocationMode = Nd4j.alloc; if (allocationMode == AllocationMode.HEAP) { if (copy) intData = ArrayUtil.copy(data); else this.intData = data; } else { wrappedBuffer = ByteBuffer.allocateDirect(4 * data.length); wrappedBuffer.order(ByteOrder.nativeOrder()); IntBuffer buffer = wrappedBuffer.asIntBuffer(); for (int i = 0; i < data.length; i++) { buffer.put(i, data[i]); } } length = data.length; }
private static WAVData readFromStream(AudioInputStream aIn) throws UnsupportedAudioFileException, IOException { ReadableByteChannel aChannel = Channels.newChannel(aIn); AudioFormat fmt = aIn.getFormat(); int numChannels = fmt.getChannels(); int bits = fmt.getSampleSizeInBits(); int format = AL_FORMAT_MONO8; if ((bits == 8) && (numChannels == 1)) { format = AL_FORMAT_MONO8; } else if ((bits == 16) && (numChannels == 1)) { format = AL_FORMAT_MONO16; } else if ((bits == 8) && (numChannels == 2)) { format = AL_FORMAT_STEREO8; } else if ((bits == 16) && (numChannels == 2)) { format = AL_FORMAT_STEREO16; } int freq = Math.round(fmt.getSampleRate()); int size = aIn.available(); ByteBuffer buffer = ByteBuffer.allocateDirect(size); while (buffer.remaining() > 0) { aChannel.read(buffer); } buffer.rewind(); // Must byte swap on big endian platforms // Thanks to swpalmer on javagaming.org forums for hint at fix if ((bits == 16) && (ByteOrder.nativeOrder() == ByteOrder.BIG_ENDIAN)) { int len = buffer.remaining(); for (int i = 0; i < len; i += 2) { byte a = buffer.get(i); byte b = buffer.get(i + 1); buffer.put(i, b); buffer.put(i + 1, a); } } WAVData result = new WAVData(buffer, format, size, freq, false); aIn.close(); return result; }
/** * Instantiate a buffer with the given length * * @param length the length of the buffer */ protected BaseDataBuffer(int length) { this.length = length; allocationMode = Nd4j.alloc; if (length < 0) throw new IllegalArgumentException("Unable to create a buffer of length <= 0"); ref = new WeakReference<DataBuffer>(this, Nd4j.bufferRefQueue()); if (allocationMode == AllocationMode.HEAP) { if (length >= Integer.MAX_VALUE) throw new IllegalArgumentException( "Length of data buffer can not be > Integer.MAX_VALUE for heap (array based storage) allocation"); if (dataType() == Type.DOUBLE) doubleData = new double[length]; else if (dataType() == Type.FLOAT) floatData = new float[length]; } else { if (length * getElementSize() < 0) throw new IllegalArgumentException( "Unable to create buffer of length " + length + " due to negative length specified"); wrappedBuffer = ByteBuffer.allocateDirect(getElementSize() * length).order(ByteOrder.nativeOrder()); } }
/** * @param data * @param copy */ public BaseDataBuffer(double[] data, boolean copy) { allocationMode = Nd4j.alloc; if (allocationMode == AllocationMode.HEAP) { if (copy) { doubleData = ArrayUtil.copy(data); } else { this.doubleData = data; } } else { wrappedBuffer = ByteBuffer.allocateDirect(8 * data.length); wrappedBuffer.order(ByteOrder.nativeOrder()); DoubleBuffer buffer = wrappedBuffer.asDoubleBuffer(); for (int i = 0; i < data.length; i++) { buffer.put(i, data[i]); } } length = data.length; underlyingLength = data.length; }
private static int biTypePF(int biType) { ByteOrder byteOrder = ByteOrder.nativeOrder(); switch (biType) { case BufferedImage.TYPE_3BYTE_BGR: return TJ.PF_BGR; case BufferedImage.TYPE_4BYTE_ABGR: case BufferedImage.TYPE_4BYTE_ABGR_PRE: return TJ.PF_XBGR; case BufferedImage.TYPE_BYTE_GRAY: return TJ.PF_GRAY; case BufferedImage.TYPE_INT_BGR: if (byteOrder == ByteOrder.BIG_ENDIAN) return TJ.PF_XBGR; else return TJ.PF_RGBX; case BufferedImage.TYPE_INT_RGB: if (byteOrder == ByteOrder.BIG_ENDIAN) return TJ.PF_XRGB; else return TJ.PF_BGRX; case BufferedImage.TYPE_INT_ARGB: case BufferedImage.TYPE_INT_ARGB_PRE: if (byteOrder == ByteOrder.BIG_ENDIAN) return TJ.PF_ARGB; else return TJ.PF_BGRA; } return 0; }
static { m_logger = Logger.getLogger((Class) JOrbisStream.class); m_bigEndian = (ByteOrder.nativeOrder() == ByteOrder.BIG_ENDIAN); }
public void mainloop() { while (!client.isConnected()) { try { System.out.println("Connecting to " + hostname + ":" + port); client.connect(hostname, port); } catch (IOException e) { } if (!client.isConnected()) { System.out.println("Couldn't connect. waiting"); try { Thread.sleep(1000); } catch (InterruptedException e) { run = false; System.exit(-1); } } } // Load the header information in one go into a bytebuffer byte[] rawbytebuf = new byte[BUFFERSIZE]; int n = 0; try { n = headerReader.read(rawbytebuf); } catch (IOException e) { e.printStackTrace(); } // Byte-buffer used to parse the byte-stream. Force native ordering ByteBuffer hdrBuf = ByteBuffer.wrap(rawbytebuf, 0, n); hdrBuf.order(ByteOrder.nativeOrder()); Header hdr = new Header(hdrBuf); if (VERB > 0) { System.out.println("Sending header: " + hdr.toString()); } hdr.nSamples = 0; // reset number of samples to 0 try { client.putHeader(hdr); } catch (IOException e) { e.printStackTrace(); } // Interval between sending samples to the buffer int pktSamples = hdr.nChans * blockSize; // number data samples in each buffer packet int pktBytes = pktSamples * DataType.wordSize[hdr.dataType]; int nsamp = 0; // sample counter int nblk = 0; int nevent = 0; byte[] samples = new byte[pktBytes]; // Size of the event header: type,type_numel,val,val_numel,sample,offset,duration,bufsz int evtHdrSz = DataType.wordSize[DataType.INT32] * 8; byte[] evtRawBuf = new byte[BUFFERSIZE]; // buffer to hold complete event structure // Byte-buffer used to parse the byte-stream. Force native ordering ByteBuffer evtBuf = ByteBuffer.wrap(evtRawBuf); evtBuf.order(ByteOrder.nativeOrder()); int payloadSz = 0; int evtSample = 0; int evtSz = 0; long sample_ms = 0; long starttime_ms = java.lang.System.currentTimeMillis(); long elapsed_ms = 0; long print_ms = 0; // Now do the data forwarding boolean eof = false; while (!eof && run) { // The run switch allows control of stopping the thread and getting out of the // loop // Read one buffer packets worth of samples // increment the cursor position if (VERB > 0 && elapsed_ms > print_ms + 500) { print_ms = elapsed_ms; System.out.println( nblk + " " + nsamp + " " + nevent + " " + (elapsed_ms / 1000) + " (blk,samp,event,sec)\r"); } // read and write the samples try { n = dataReader.read(samples); } catch (IOException e) { e.printStackTrace(); } if (n <= 0) { eof = true; break; } // stop if run out of samples try { client.putRawData(blockSize, hdr.nChans, hdr.dataType, samples); } catch (IOException e) { e.printStackTrace(); } // update the sample count nsamp += blockSize; while (evtSample <= nsamp) { if (evtSample > 0) { // send the current event try { client.putRawEvent(evtRawBuf, 0, evtSz); } catch (IOException e) { e.printStackTrace(); } nevent++; } // read the next event try { n = eventReader.read(evtRawBuf, 0, evtHdrSz); // read the fixed size header } catch (IOException e) { e.printStackTrace(); } if (n <= 0) { eof = true; break; } evtSample = ((ByteBuffer) evtBuf.position(4 * 4)).getInt(); // sample index for this event payloadSz = ((ByteBuffer) evtBuf.position(4 * 7)).getInt(); // payload size for this event evtSz = evtHdrSz + payloadSz; // read the variable part try { n = eventReader.read(evtRawBuf, evtHdrSz, payloadSz); } catch (IOException e) { e.printStackTrace(); } if (n <= 0) { eof = true; break; } // print the event we just read if (VERB > 1) { ByteBuffer tmpev = ByteBuffer.wrap(evtRawBuf, 0, evtSz); tmpev.order(evtBuf.order()); BufferEvent evt = new BufferEvent(tmpev); System.out.println("Read Event: " + evt); } } // sleep until the next packet should be send OR EOF /*when to send the next sample */ sample_ms = (long) ((float) (nsamp * 1000) / hdr.fSample / (float) speedup); elapsed_ms = java.lang.System.currentTimeMillis() - starttime_ms; // current time if (sample_ms > elapsed_ms) try { Thread.sleep(sample_ms - elapsed_ms); } catch (InterruptedException e) { e.printStackTrace(); } nblk++; } stop(); }
/** * 描画用マテリアル情報をMQOデータから作成 * * @param mqomat MQOファイルから読み込んだマテリアル情報 * @param i_mqomat MQOファイルのマテリアル番号 * @param mqoObjs MQOファイルのオブジェクト情報 * @param vn 頂点法線配列 * @return 描画用マテリアル情報 */ private GLMaterial makeMats( GL10 gl, material mqomat, int i_mqomat, objects mqoObjs, KGLPoint[] vn) { GLMaterial ret = new GLMaterial(); ArrayList<KGLPoint> apv = new ArrayList<KGLPoint>(); ArrayList<KGLPoint> apn = new ArrayList<KGLPoint>(); ArrayList<KGLPoint> apuv = new ArrayList<KGLPoint>(); ArrayList<KGLPoint> apc = new ArrayList<KGLPoint>(); KGLPoint wpoint = null; boolean uvValid = false; boolean colValid = false; KGLPoint fn; float s; for (int f = 0; f < mqoObjs.face.length; f++) { if (mqoObjs.face[f].M == null) { continue; } if (mqoObjs.face[f].M != i_mqomat) continue; fn = calcNormal( mqoObjs.vertex, mqoObjs.face[f].V[0], mqoObjs.face[f].V[1], mqoObjs.face[f].V[2]); for (int v = 0; v < 3; v++) { apv.add(mqoObjs.vertex[mqoObjs.face[f].V[v]]); // apv.add(new KGLPoint(mqoObjs.vertex[mqoObjs.face[f].V[v]])) ; s = (float) Math.acos( fn.X() * vn[mqoObjs.face[f].V[v]].X() + fn.Y() * vn[mqoObjs.face[f].V[v]].Y() + fn.Z() * vn[mqoObjs.face[f].V[v]].Z()); if (mqoObjs.data.facet < s) { apn.add(fn); } else { apn.add(vn[mqoObjs.face[f].V[v]]); } wpoint = new KGLPoint(2); if (mqoObjs.face[f].UV == null) { wpoint.set_UV(0, 0); } else { wpoint.set_UV(mqoObjs.face[f].UV[v * 2 + 0], mqoObjs.face[f].UV[v * 2 + 1]); uvValid = true; } apuv.add(wpoint); wpoint = new KGLPoint(4); if (mqoObjs.face[f].COL == null) { if (mqomat.data.col == null) { wpoint.set_COLOR(1.0f, 1.0f, 1.0f, 1.0f); } else { wpoint.set_COLOR( mqomat.data.col[0], mqomat.data.col[1], mqomat.data.col[2], mqomat.data.col[3]); } } else { wpoint.set_COLOR( mqoObjs.face[f].COL[v * 4 + 0], mqoObjs.face[f].COL[v * 4 + 1], mqoObjs.face[f].COL[v * 4 + 2], mqoObjs.face[f].COL[v * 4 + 3]); colValid = true; } apc.add(wpoint); } } ret.texID = texPool.getGLTexture(gl, mqomat.data.tex, mqomat.data.aplane, false); // @@@ reload 用 if (ret.texID != 0) { ret.texName = mqomat.data.tex; ret.alphaTexName = mqomat.data.aplane; } else { ret.texName = null; ret.alphaTexName = null; } if (apv.size() == 0) return null; uvValid &= (ret.texID != 0); ret.name = mqomat.name; // uvValid = false ; KGLPoint[] wfv = null; KGLPoint[] wfn = null; KGLPoint[] wft = null; KGLPoint[] wfc = null; wfv = apv.toArray(new KGLPoint[0]); wfn = apn.toArray(new KGLPoint[0]); wft = apuv.toArray(new KGLPoint[0]); wfc = apc.toArray(new KGLPoint[0]); ret.vertex_num = wfv.length; // @@@ interleaveFormat は無いので分ける ret.uvValid = uvValid; ret.colValid = colValid; ret.vertexBuffer = ByteBuffer.allocateDirect(ret.vertex_num * 3 * 4); ret.vertexBuffer.order(ByteOrder.nativeOrder()); ret.vertexBuffer.position(0); ret.normalBuffer = ByteBuffer.allocateDirect(ret.vertex_num * 3 * 4); ret.normalBuffer.order(ByteOrder.nativeOrder()); ret.normalBuffer.position(0); if (uvValid) { ret.uvBuffer = ByteBuffer.allocateDirect(ret.vertex_num * 2 * 4); ret.uvBuffer.order(ByteOrder.nativeOrder()); ret.uvBuffer.position(0); } if (colValid) { ret.colBuffer = ByteBuffer.allocateDirect(ret.vertex_num * 4 * 4); ret.colBuffer.order(ByteOrder.nativeOrder()); ret.colBuffer.position(0); } // Log.i("KGLMetaseq", "vertex_num: "+ ret.vertex_num); for (int v = 0; v < ret.vertex_num; v++) { ret.vertexBuffer.putFloat(wfv[v].X()); ret.vertexBuffer.putFloat(wfv[v].Y()); ret.vertexBuffer.putFloat(wfv[v].Z()); ret.normalBuffer.putFloat(wfn[v].X()); ret.normalBuffer.putFloat(wfn[v].Y()); ret.normalBuffer.putFloat(wfn[v].Z()); if (uvValid) { ret.uvBuffer.putFloat(wft[v].U()); ret.uvBuffer.putFloat(wft[v].V()); } if (colValid) { ret.colBuffer.putFloat(wfc[v].R()); ret.colBuffer.putFloat(wfc[v].G()); ret.colBuffer.putFloat(wfc[v].B()); ret.colBuffer.putFloat(wfc[v].A()); } } if (mqomat.data.col != null) { ret.color = new float[mqomat.data.col.length]; for (int c = 0; c < mqomat.data.col.length; c++) { ret.color[c] = mqomat.data.col[c]; } if (mqomat.data.dif != null) { ret.dif = new float[mqomat.data.col.length]; for (int c = 0; c < mqomat.data.col.length; c++) { ret.dif[c] = mqomat.data.dif * mqomat.data.col[c]; } // KEICHECK difでアルファ値を1未満にすると透明度が変化する? ret.dif[3] = mqomat.data.col[3]; } if (mqomat.data.amb != null) { ret.amb = new float[mqomat.data.col.length]; for (int c = 0; c < mqomat.data.col.length; c++) { ret.amb[c] = mqomat.data.amb * mqomat.data.col[c]; } } if (mqomat.data.emi != null) { ret.emi = new float[mqomat.data.col.length]; for (int c = 0; c < mqomat.data.col.length; c++) { ret.emi[c] = mqomat.data.emi * mqomat.data.col[c]; } } if (mqomat.data.spc != null) { ret.spc = new float[mqomat.data.col.length]; for (int c = 0; c < mqomat.data.col.length; c++) { ret.spc[c] = mqomat.data.spc * mqomat.data.col[c]; } } } if (mqomat.data.pow != null) { ret.power = new float[1]; ret.power[0] = mqomat.data.pow; } ret.shadeMode_IsSmooth = true; // defaultはtrue if (mqoObjs.data.shading == 0) ret.shadeMode_IsSmooth = false; return ret; }
protected static CharBuffer newCharBuffer(int numElements) { ByteBuffer bb = ByteBuffer.allocateDirect((Character.SIZE / 8) * numElements); bb.order(ByteOrder.nativeOrder()); return bb.asCharBuffer(); }
// sets the nio wrapped buffer (allows to be overridden for other use cases like cuda) protected void setNioBuffer() { wrappedBuffer = ByteBuffer.allocateDirect(elementSize * length); wrappedBuffer.order(ByteOrder.nativeOrder()); }