/** * Creates a new FloatProcessor using the specified ImageProcessor. Set 'cm' to null to use the * default grayscale LUT. */ public SerializableFloatProcessor(ImageProcessor imageProcessor) { imageProcessor = imageProcessor.duplicate(); FloatProcessor floatProcessor = imageProcessor.toFloat(0, null); this.width = floatProcessor.getWidth(); this.height = floatProcessor.getHeight(); this.pixels = (float[]) floatProcessor.getPixels(); this.cm = floatProcessor.getColorModel(); resetRoi(); if (pixels != null) findMinAndMax(); }
boolean eraseOutsideRoi(ImageProcessor ip, Rectangle r, ImageProcessor mask) { int width = ip.getWidth(); int height = ip.getHeight(); ip.setRoi(r); if (excludeEdgeParticles && polygon != null) { ImageStatistics stats = ImageStatistics.getStatistics(ip, MIN_MAX, null); if (fillColor >= stats.min && fillColor <= stats.max) { double replaceColor = level1 - 1.0; if (replaceColor < 0.0 || replaceColor == fillColor) { replaceColor = level2 + 1.0; int maxColor = imageType == BYTE ? 255 : 65535; if (replaceColor > maxColor || replaceColor == fillColor) { IJ.error("Particle Analyzer", "Unable to remove edge particles"); return false; } } for (int y = minY; y < maxY; y++) { for (int x = minX; x < maxX; x++) { int v = ip.getPixel(x, y); if (v == fillColor) ip.putPixel(x, y, (int) replaceColor); } } } } ip.setValue(fillColor); if (mask != null) { mask = mask.duplicate(); mask.invert(); ip.fill(mask); } ip.setRoi(0, 0, r.x, height); ip.fill(); ip.setRoi(r.x, 0, r.width, r.y); ip.fill(); ip.setRoi(r.x, r.y + r.height, r.width, height - (r.y + r.height)); ip.fill(); ip.setRoi(r.x + r.width, 0, width - (r.x + r.width), height); ip.fill(); ip.resetRoi(); // IJ.log("erase: "+fillColor+" "+level1+" "+level2+" "+excludeEdgeParticles); // (new ImagePlus("ip2", ip.duplicate())).show(); return true; }
@Override public Grid2D applyToolToImage(Grid2D imageProcessor) { FloatProcessor imp = new FloatProcessor(imageProcessor.getWidth(), imageProcessor.getHeight()); imp.setPixels(imageProcessor.getBuffer()); if (!initBead) initializeBead(); ImageProcessor imp1 = imp.duplicate(); // original double[][] beadMean3D = config.getBeadMeanPosition3D(); // [beadNo][x,y,z] double[] uv = new double[1]; SimpleMatrix pMatrix = config.getGeometry().getProjectionMatrix(imageIndex).computeP(); // [projection #][bead #][u, v, state[0: initial, 1: registered, 2: updated by hough searching]] double[][][] beadPosition2D = config.getBeadPosition2D(); int noBeadRegistered = 0; double[][] xy1 = new double[WeightBearingBeadPositionBuilder.beadNo][2]; // original double[][] xy2 = new double[WeightBearingBeadPositionBuilder.beadNo] [2]; // warped (mapped to the mean), control points, reference double[][] xy1_hat = new double[WeightBearingBeadPositionBuilder.beadNo][2]; // original double[][] xy2_hat = new double[WeightBearingBeadPositionBuilder.beadNo][2]; // original // double distanceReferenceToCurrentBead = 0; for (int i = WeightBearingBeadPositionBuilder.currentBeadNo; i >= 0; i--) { if (beadMean3D[i][0] != 0 || beadMean3D[i][1] != 0 || beadMean3D[i][2] != 0) { // assume bead 3d is registered. uv = compute2DCoordinates(beadMean3D[i], pMatrix); // find bead location if registered by txt: state 1 if (beadPosition2D[imageIndex][i][2] == 1) { noBeadRegistered++; if (isDisplay) { imp1.setValue(2); imp1.drawLine( (int) Math.round(beadPosition2D[imageIndex][i][0] - 10), (int) Math.round(beadPosition2D[imageIndex][i][1] - 10), (int) Math.round(beadPosition2D[imageIndex][i][0] + 10), (int) Math.round(beadPosition2D[imageIndex][i][1] + 10)); imp1.drawLine( (int) Math.round(beadPosition2D[imageIndex][i][0] - 10), (int) Math.round(beadPosition2D[imageIndex][i][1] + 10), (int) Math.round(beadPosition2D[imageIndex][i][0] + 10), (int) Math.round(beadPosition2D[imageIndex][i][1] - 10)); imp1.drawString( "Bead " + i + " (state:" + (int) beadPosition2D[imageIndex][i][2] + ")", (int) beadPosition2D[imageIndex][i][0], (int) beadPosition2D[imageIndex][i][1] - 10); } xy1[noBeadRegistered - 1][0] = beadPosition2D[imageIndex][i][0]; xy1[noBeadRegistered - 1][1] = beadPosition2D[imageIndex][i][1]; xy2[noBeadRegistered - 1][0] = uv[0]; xy2[noBeadRegistered - 1][1] = uv[1]; } else if (imageIndex != 0 && imageIndex != config.getGeometry().getNumProjectionMatrices() - 1) { if (beadPosition2D[imageIndex - 1][i][2] == 1 && beadPosition2D[imageIndex + 1][i][2] == 1) { noBeadRegistered++; double xMean = (beadPosition2D[imageIndex - 1][i][0] + beadPosition2D[imageIndex - 1][i][0]) / 2; double yMean = (beadPosition2D[imageIndex + 1][i][1] + beadPosition2D[imageIndex + 1][i][1]) / 2; if (isDisplay) { imp1.setValue(2); imp1.drawLine( (int) Math.round(xMean - 10), (int) Math.round(yMean - 10), (int) Math.round(xMean + 10), (int) Math.round(yMean + 10)); imp1.drawLine( (int) Math.round(xMean - 10), (int) Math.round(yMean + 10), (int) Math.round(xMean + 10), (int) Math.round(yMean - 10)); imp1.drawString("Bead " + i + " (state:" + "M)", (int) xMean, (int) yMean - 10); } xy1[noBeadRegistered - 1][0] = xMean; xy1[noBeadRegistered - 1][1] = yMean; xy2[noBeadRegistered - 1][0] = uv[0]; xy2[noBeadRegistered - 1][1] = uv[1]; } } // mean projected bead // imp1.drawLine((int) Math.round(uv[0]-10), (int) Math.round(uv[1]), (int) // Math.round(uv[0]+10), (int) Math.round(uv[1])); // imp1.drawLine((int) Math.round(uv[0]), (int) Math.round(uv[1]-10), (int) // Math.round(uv[0]), (int) Math.round(uv[1]+10)); } } if (isDisplay) { for (int x = 0; x < config.getGeometry().getDetectorWidth(); x += 50) imp1.drawLine(x, 0, x, config.getGeometry().getDetectorHeight()); for (int y = 0; y < config.getGeometry().getDetectorHeight(); y += 50) imp1.drawLine(0, y, config.getGeometry().getDetectorWidth(), y); } if (isCornerIncluded) { xy1[noBeadRegistered + 0][0] = 0; xy1[noBeadRegistered + 0][1] = 0; xy2[noBeadRegistered + 0][0] = 0; xy2[noBeadRegistered + 0][1] = 0; xy1[noBeadRegistered + 1][0] = 0; xy1[noBeadRegistered + 1][1] = config.getGeometry().getDetectorHeight(); xy2[noBeadRegistered + 1][0] = 0; xy2[noBeadRegistered + 1][1] = config.getGeometry().getDetectorHeight(); xy1[noBeadRegistered + 2][0] = config.getGeometry().getDetectorWidth(); xy1[noBeadRegistered + 2][1] = 0; xy2[noBeadRegistered + 2][0] = config.getGeometry().getDetectorWidth(); xy2[noBeadRegistered + 2][1] = 0; xy1[noBeadRegistered + 3][0] = config.getGeometry().getDetectorWidth(); xy1[noBeadRegistered + 3][1] = config.getGeometry().getDetectorHeight(); xy2[noBeadRegistered + 3][0] = config.getGeometry().getDetectorWidth(); xy2[noBeadRegistered + 3][1] = config.getGeometry().getDetectorHeight(); noBeadRegistered = noBeadRegistered + 4; } boolean fScaling = true; double minX = Double.MAX_VALUE; double maxX = 0; double minY = Double.MAX_VALUE; double maxY = 0; double c = 0; if (fScaling) { // ----- scaling to reduce condition # of A matrix for (int i = 0; i < noBeadRegistered; i++) { minX = Math.min(minX, xy1[i][0]); maxX = Math.max(maxX, xy1[i][0]); minY = Math.min(minY, xy1[i][1]); maxY = Math.max(maxY, xy1[i][1]); } c = Math.max(maxX - minX, maxY - minY); for (int i = 0; i < noBeadRegistered; i++) { xy1_hat[i][0] = (xy1[i][0] - minX) / c; xy1_hat[i][1] = (xy1[i][1] - minY) / c; xy2_hat[i][0] = (xy2[i][0] - minX) / c; xy2_hat[i][1] = (xy2[i][1] - minY) / c; } } else { xy1_hat = xy1; xy2_hat = xy2; } ImageProcessor imp2 = imp1.duplicate(); // warped /* * A*x = b * Matrix A = (n + 3) * (n + 3); * n (noBeadRegistered + 4): # of control points + 4 corner points (assume corner points are static) */ int n = noBeadRegistered + 3; SimpleMatrix A = new SimpleMatrix(n, n); SimpleVector x_x = new SimpleVector(n); SimpleVector x_y = new SimpleVector(n); SimpleVector b_x = new SimpleVector(n); SimpleVector b_y = new SimpleVector(n); double rij = 0; double valA = 0; double valb_x = 0; double valb_y = 0; // Matrix L formation // alpha: mean of distances between control points' xy-projections) is a constant only present // on the diagonal of K // lambda: TPS smoothing regularization coefficient double alpha = 0.0; double lambda = 1.6; // 1.6 for (int i = 0; i < noBeadRegistered; i++) { // i= # of row for (int j = i; j < noBeadRegistered; j++) { // j= # of column alpha += Math.sqrt( Math.pow(xy2_hat[i][0] - xy2_hat[j][0], 2) + Math.pow(xy2_hat[i][1] - xy2_hat[j][1], 2)); } } alpha = alpha / Math.pow(noBeadRegistered, 2); for (int i = 0; i < n; i++) { // i= # of row for (int j = i; j < n; j++) { // j= # of column if (i < 3 && j < 3) valA = 0; else if (i >= 3 && j >= 3 && i == j) { valA = Math.pow(alpha, 2) * lambda; // valA = lambda; if (imageIndex < 10) System.out.println("Regularization = " + valA + ", lambda= " + lambda); } else if (i == 0 && j >= 0) valA = 1; else if (i == 1 && j >= 3) valA = xy1_hat[j - 3][0]; else if (i == 2 && j >= 3) valA = xy1_hat[j - 3][1]; else { rij = Math.pow(xy1_hat[j - 3][0] - xy1_hat[i - 3][0], 2) + Math.pow(xy1_hat[j - 3][1] - xy1_hat[i - 3][1], 2); if (rij == 0) valA = 0; else valA = rij * Math.log(rij); } A.setElementValue(i, j, valA); A.setElementValue(j, i, valA); } if (i < 3) { valb_x = 0; valb_y = 0; } else { // valb_x = xy2_hat[i-3][0]-xy1_hat[i-3][0]; // valb_y = xy2_hat[i-3][1]-xy1_hat[i-3][1]; valb_x = xy2[i - 3][0] - xy1[i - 3][0]; valb_y = xy2[i - 3][1] - xy1[i - 3][1]; // if (imageIndex > 150 && imageIndex < 170) // System.out.println("Idx" + imageIndex + ",Elevation" + (i-3) + ": " + valb_x + "---" // + valb_y); } b_x.setElementValue(i, valb_x); b_y.setElementValue(i, valb_y); } // System.out.println("A condition number=" + A.conditionNumber(MatrixNormType.MAT_NORM_L1)); // System.out.println("A condition number=" + A.conditionNumber(MatrixNormType.MAT_NORM_LINF)); x_x = Solvers.solveLinearSysytemOfEquations(A, b_x); x_y = Solvers.solveLinearSysytemOfEquations(A, b_y); if (fScaling) { // ----- pixel space coefficients a, b scaling back double tmpA0 = x_x.getElement(0) - x_x.getElement(1) * (minX / c) - x_x.getElement(2) * (minY / c); for (int j = 0; j < noBeadRegistered; j++) { tmpA0 -= Math.log(c) * 2 * x_x.getElement(j + 3) * (Math.pow(xy1_hat[j][0], 2) + Math.pow(xy1_hat[j][1], 2)); } x_x.setElementValue(0, tmpA0); tmpA0 = x_y.getElement(0) - x_y.getElement(1) * (minX / c) - x_y.getElement(2) * (minY / c); for (int j = 0; j < noBeadRegistered; j++) { tmpA0 -= Math.log(c) * 2 * x_y.getElement(j + 3) * (Math.pow(xy1_hat[j][0], 2) + Math.pow(xy1_hat[j][1], 2)); } x_y.setElementValue(0, tmpA0); x_x.setElementValue(1, x_x.getElement(1) / c); x_y.setElementValue(1, x_y.getElement(1) / c); x_x.setElementValue(2, x_x.getElement(2) / c); x_y.setElementValue(2, x_y.getElement(2) / c); for (int i = 3; i < n; i++) { x_x.setElementValue(i, x_x.getElement(i) / Math.pow(c, 2)); x_y.setElementValue(i, x_y.getElement(i) / Math.pow(c, 2)); } // ----- pixel space coefficients a, b scaling back end } double devU = 0; double devV = 0; // Do warping // if (imageIndex == 0) { for (int y = 0; y < config.getGeometry().getDetectorHeight(); y++) { // for (int y=252; y<253; y++) { for (int x = 0; x < config.getGeometry().getDetectorWidth(); x++) { // for (int x=606; x<607; x++) { devU = x_x.getElement(0) + x_x.getElement(1) * x + x_x.getElement(2) * y; devV = x_y.getElement(0) + x_y.getElement(1) * x + x_y.getElement(2) * y; for (int i = 0; i < noBeadRegistered; i++) { rij = Math.pow(xy1[i][0] - x, 2) + Math.pow(xy1[i][1] - y, 2); if (rij > 0) { devU += x_x.getElement(i + 3) * rij * Math.log(rij); devV += x_y.getElement(i + 3) * rij * Math.log(rij); } } // devU = 0; // devV = 0; imp2.setf(x, y, (float) imp1.getInterpolatedValue(x - devU, y - devV)); // System.out.println("x, y=" + x + ", " + y + "\t" + devU + ", " + devV); // maxDevU = Math.max(maxDevU, devU); // maxDevV = Math.max(maxDevV, devV); } } // Error estimate after transformation // for (int i=0; i<= WeightBearingBeadPositionBuilder.currentBeadNo; i++){ // // if (beadMean3D[i][0] != 0 || beadMean3D[i][1] != 0 || beadMean3D[i][2] != 0){ // assume // bead 3d is registered. // // // find bead location if registered by txt: state 1 // if (beadPosition2D[imageIndex][i][2] == 1){ // // // Projected Reference // uv = compute2DCoordinates(beadMean3D[i], pMatrix); // double x = uv[0]; // double y = uv[1]; // // bead detected position in 2d // // Transform to 2D coordinates, time variant position // //beadPosition2D[imageIndex][i][0]; // //beadPosition2D[imageIndex][i][1]; // // devU = x_x.getElement(0) + x_x.getElement(1)*x + x_x.getElement(2)*y; // devV = x_y.getElement(0) + x_y.getElement(1)*x + x_y.getElement(2)*y; // for (int j=0; j<noBeadRegistered; j++){ // rij = Math.pow(xy1[j][0]-x, 2) + Math.pow(xy1[j][1]-y, 2); // if (rij > 0) { // devU += x_x.getElement(j+3)*rij*Math.log(rij); // devV += x_y.getElement(j+3)*rij*Math.log(rij); // } // } // // distanceReferenceToCurrentBead += // Math.sqrt(Math.pow(uv[0]-(beadPosition2D[imageIndex][i][0]+devU), // 2)+Math.pow(uv[1]-(beadPosition2D[imageIndex][i][1]+devV), 2)); // // } // } // } // System.out.println("Euclidean distance\t" + imageIndex + "\t" + // distanceReferenceToCurrentBead/noBeadRegistered); // } if (isDisplay) { for (int i = WeightBearingBeadPositionBuilder.currentBeadNo; i >= 0; i--) { if (beadMean3D[i][0] != 0 || beadMean3D[i][1] != 0 || beadMean3D[i][2] != 0) { // assume bead 3d is registered. uv = compute2DCoordinates(beadMean3D[i], pMatrix); imp2.setValue(2); // mean projected bead imp2.drawLine( (int) Math.round(uv[0] - 10), (int) Math.round(uv[1]), (int) Math.round(uv[0] + 10), (int) Math.round(uv[1])); imp2.drawLine( (int) Math.round(uv[0]), (int) Math.round(uv[1] - 10), (int) Math.round(uv[0]), (int) Math.round(uv[1] + 10)); } } } Grid2D result = new Grid2D((float[]) imp2.getPixels(), imp2.getWidth(), imp2.getHeight()); return result; }
// Particle finding routine based on spots enhancement with // 2D PSF Gaussian approximated convolution/backgrounds subtraction, thresholding // and particle filtering void detectParticles( ImageProcessor ip, SMLDialog fdg, int nFrame, Overlay SpotsPositions_, Roi RoiActive_) { int nThreshold; FloatProcessor dupip = null; // duplicate of image ImageProcessor dushort; // duplicate of image ByteProcessor dubyte = null; // tresholded image TypeConverter tc; dupip = (FloatProcessor) ip.duplicate().convertToFloat(); SMLblur1Direction( dupip, fdg.dPSFsigma * 0.5, 0.0002, true, (int) Math.ceil(5 * fdg.dPSFsigma * 0.5)); SMLblur1Direction(dupip, fdg.dPSFsigma * 0.5, 0.0002, false, 0); // new ImagePlus("gassconvoluted", dupip.convertToFloat().duplicate()).show(); // low-pass filtering by gaussian blurring // lowpassGauss.blurGaussian(dupip, fdg.dPSFsigma*0.5, fdg.dPSFsigma*0.5, 0.0002); // convolution with gaussian PSF kernel SMLconvolveFloat(dupip, fConKernel, fdg.nKernelSize, fdg.nKernelSize); // new ImagePlus("convoluted", dupip.duplicate()).show(); tc = new TypeConverter(dupip, true); dushort = tc.convertToShort(); // new ImagePlus("convoluted", dushort.duplicate()).show(); // thresholding // old straightforward thresholding // imgstat = ImageStatistics.getStatistics(dupip, 22, null); //6 means MEAN + STD_DEV, look at // ij.measure.Measurements // nThreshold = (int)(imgstat.mean + 3.0*imgstat.stdDev); // new smart thresholding nThreshold = getThreshold(dushort); dushort.threshold(nThreshold); // convert to byte dubyte = (ByteProcessor) dushort.convertToByte(false); // new ImagePlus("threshold", dubyte.duplicate()).show(); // morphological operations on thresholded image // dubyte.dilate(2, 0); // dubyte.erode(2, 0); // cleaning up image a bit if (fdg.nKernelSize > 3) { dubyte.dilate(); // new ImagePlus("dilated", dubyte.duplicate()).show(); dubyte.erode(); // new ImagePlus("erosion", dubyte.duplicate()).show(); } // dupip.invert(); labelParticles( dubyte, ip, nFrame, fdg.dPixelSize, fdg.nAreaCut, fdg.dPSFsigma, SpotsPositions_, fdg.bShowParticles, RoiActive_); // , fdg.bIgnoreFP);//, fdg.dSymmetry/100); }
/** * Performs particle analysis on the specified ImagePlus and ImageProcessor. Returns false if * there is an error. */ public boolean analyze(ImagePlus imp, ImageProcessor ip) { if (this.imp == null) this.imp = imp; showResults = (options & SHOW_RESULTS) != 0; excludeEdgeParticles = (options & EXCLUDE_EDGE_PARTICLES) != 0; resetCounter = (options & CLEAR_WORKSHEET) != 0; showProgress = (options & SHOW_PROGRESS) != 0; floodFill = (options & INCLUDE_HOLES) == 0; recordStarts = (options & RECORD_STARTS) != 0; addToManager = (options & ADD_TO_MANAGER) != 0; displaySummary = (options & DISPLAY_SUMMARY) != 0; inSituShow = (options & IN_SITU_SHOW) != 0; outputImage = null; ip.snapshot(); ip.setProgressBar(null); if (Analyzer.isRedirectImage()) { redirectImp = Analyzer.getRedirectImage(imp); if (redirectImp == null) return false; int depth = redirectImp.getStackSize(); if (depth > 1 && depth == imp.getStackSize()) { ImageStack redirectStack = redirectImp.getStack(); redirectIP = redirectStack.getProcessor(imp.getCurrentSlice()); } else redirectIP = redirectImp.getProcessor(); } else if (imp.getType() == ImagePlus.COLOR_RGB) { ImagePlus original = (ImagePlus) imp.getProperty("OriginalImage"); if (original != null && original.getWidth() == imp.getWidth() && original.getHeight() == imp.getHeight()) { redirectImp = original; redirectIP = original.getProcessor(); } } if (!setThresholdLevels(imp, ip)) return false; width = ip.getWidth(); height = ip.getHeight(); if (!(showChoice == NOTHING || showChoice == OVERLAY_OUTLINES || showChoice == OVERLAY_MASKS)) { blackBackground = Prefs.blackBackground && inSituShow; if (slice == 1) outlines = new ImageStack(width, height); if (showChoice == ROI_MASKS) drawIP = new ShortProcessor(width, height); else drawIP = new ByteProcessor(width, height); drawIP.setLineWidth(lineWidth); if (showChoice == ROI_MASKS) { } // Place holder for now... else if (showChoice == MASKS && !blackBackground) drawIP.invertLut(); else if (showChoice == OUTLINES) { if (!inSituShow) { if (customLut == null) makeCustomLut(); drawIP.setColorModel(customLut); } drawIP.setFont(new Font("SansSerif", Font.PLAIN, fontSize)); if (fontSize > 12 && inSituShow) drawIP.setAntialiasedText(true); } outlines.addSlice(null, drawIP); if (showChoice == ROI_MASKS || blackBackground) { drawIP.setColor(Color.black); drawIP.fill(); drawIP.setColor(Color.white); } else { drawIP.setColor(Color.white); drawIP.fill(); drawIP.setColor(Color.black); } } calibration = redirectImp != null ? redirectImp.getCalibration() : imp.getCalibration(); if (rt == null) { rt = Analyzer.getResultsTable(); analyzer = new Analyzer(imp); } else analyzer = new Analyzer(imp, measurements, rt); if (resetCounter && slice == 1) { if (!Analyzer.resetCounter()) return false; } beginningCount = Analyzer.getCounter(); byte[] pixels = null; if (ip instanceof ByteProcessor) pixels = (byte[]) ip.getPixels(); if (r == null) { r = ip.getRoi(); mask = ip.getMask(); if (displaySummary) { if (mask != null) totalArea = ImageStatistics.getStatistics(ip, AREA, calibration).area; else totalArea = r.width * calibration.pixelWidth * r.height * calibration.pixelHeight; } } minX = r.x; maxX = r.x + r.width; minY = r.y; maxY = r.y + r.height; if (r.width < width || r.height < height || mask != null) { if (!eraseOutsideRoi(ip, r, mask)) return false; } int offset; double value; int inc = Math.max(r.height / 25, 1); int mi = 0; ImageWindow win = imp.getWindow(); if (win != null) win.running = true; if (measurements == 0) measurements = Analyzer.getMeasurements(); if (showChoice == ELLIPSES) measurements |= ELLIPSE; measurements &= ~LIMIT; // ignore "Limit to Threshold" roiNeedsImage = (measurements & PERIMETER) != 0 || (measurements & SHAPE_DESCRIPTORS) != 0 || (measurements & FERET) != 0; particleCount = 0; wand = new Wand(ip); pf = new PolygonFiller(); if (floodFill) { ImageProcessor ipf = ip.duplicate(); ipf.setValue(fillColor); ff = new FloodFiller(ipf); } roiType = Wand.allPoints() ? Roi.FREEROI : Roi.TRACED_ROI; for (int y = r.y; y < (r.y + r.height); y++) { offset = y * width; for (int x = r.x; x < (r.x + r.width); x++) { if (pixels != null) value = pixels[offset + x] & 255; else if (imageType == SHORT) value = ip.getPixel(x, y); else value = ip.getPixelValue(x, y); if (value >= level1 && value <= level2) analyzeParticle(x, y, imp, ip); } if (showProgress && ((y % inc) == 0)) IJ.showProgress((double) (y - r.y) / r.height); if (win != null) canceled = !win.running; if (canceled) { Macro.abort(); break; } } if (showProgress) IJ.showProgress(1.0); if (showResults) rt.updateResults(); imp.killRoi(); ip.resetRoi(); ip.reset(); if (displaySummary && IJ.getInstance() != null) updateSliceSummary(); if (addToManager && roiManager != null) roiManager.setEditMode(imp, true); maxParticleCount = (particleCount > maxParticleCount) ? particleCount : maxParticleCount; totalCount += particleCount; if (!canceled) showResults(); return true; }
/** Ask for parameters and then execute. */ public void run(String arg) { // 1 - Obtain the currently active image: ImagePlus imp = IJ.getImage(); if (null == imp) { IJ.showMessage("There must be at least one image open"); return; } if (imp.getBitDepth() != 8) { IJ.showMessage("Error", "Only 8-bit images are supported"); return; } // 2 - Ask for parameters: GenericDialog gd = new GenericDialog("Auto Local Threshold"); String[] methods = { "Try all", "Bernsen", "Contrast", "Mean", "Median", "MidGrey", "Niblack", "Otsu", "Phansalkar", "Sauvola" }; gd.addMessage("Auto Local Threshold v1.5"); gd.addChoice("Method", methods, methods[0]); gd.addNumericField("Radius", 15, 0); gd.addMessage("Special paramters (if different from default)"); gd.addNumericField("Parameter_1", 0, 0); gd.addNumericField("Parameter_2", 0, 0); gd.addCheckbox("White objects on black background", true); if (imp.getStackSize() > 1) { gd.addCheckbox("Stack", false); } gd.addMessage("Thresholded result is always shown in white [255]."); gd.showDialog(); if (gd.wasCanceled()) return; // 3 - Retrieve parameters from the dialog String myMethod = gd.getNextChoice(); int radius = (int) gd.getNextNumber(); double par1 = (double) gd.getNextNumber(); double par2 = (double) gd.getNextNumber(); boolean doIwhite = gd.getNextBoolean(); boolean doIstack = false; int stackSize = imp.getStackSize(); if (stackSize > 1) doIstack = gd.getNextBoolean(); // 4 - Execute! // long start = System.currentTimeMillis(); if (myMethod.equals("Try all")) { ImageProcessor ip = imp.getProcessor(); int xe = ip.getWidth(); int ye = ip.getHeight(); int ml = methods.length; ImagePlus imp2, imp3; ImageStack tstack = null, stackNew; if (stackSize > 1 && doIstack) { boolean doItAnyway = true; if (stackSize > 25) { YesNoCancelDialog d = new YesNoCancelDialog( IJ.getInstance(), "Auto Local Threshold", "You might run out of memory.\n \nDisplay " + stackSize + " slices?\n \n \'No\' will process without display and\noutput results to the log window."); if (!d.yesPressed()) { // doIlog=true; //will show in the log window doItAnyway = false; } if (d.cancelPressed()) return; } for (int j = 1; j <= stackSize; j++) { imp.setSlice(j); ip = imp.getProcessor(); tstack = new ImageStack(xe, ye); for (int k = 1; k < ml; k++) tstack.addSlice(methods[k], ip.duplicate()); imp2 = new ImagePlus("Auto Threshold", tstack); imp2.updateAndDraw(); for (int k = 1; k < ml; k++) { imp2.setSlice(k); Object[] result = exec(imp2, methods[k], radius, par1, par2, doIwhite); } // if (doItAnyway){ CanvasResizer cr = new CanvasResizer(); stackNew = cr.expandStack(tstack, (xe + 2), (ye + 18), 1, 1); imp3 = new ImagePlus("Auto Threshold", stackNew); imp3.updateAndDraw(); MontageMaker mm = new MontageMaker(); mm.makeMontage(imp3, 3, 3, 1.0, 1, (ml - 1), 1, 0, true); // 3 columns and 3 rows } imp.setSlice(1); // if (doItAnyway) IJ.run("Images to Stack", "method=[Copy (center)] title=Montage"); return; } else { // single image try all tstack = new ImageStack(xe, ye); for (int k = 1; k < ml; k++) tstack.addSlice(methods[k], ip.duplicate()); imp2 = new ImagePlus("Auto Threshold", tstack); imp2.updateAndDraw(); for (int k = 1; k < ml; k++) { imp2.setSlice(k); // IJ.log("analyzing slice with "+methods[k]); Object[] result = exec(imp2, methods[k], radius, par1, par2, doIwhite); } // imp2.setSlice(1); CanvasResizer cr = new CanvasResizer(); stackNew = cr.expandStack(tstack, (xe + 2), (ye + 18), 1, 1); imp3 = new ImagePlus("Auto Threshold", stackNew); imp3.updateAndDraw(); MontageMaker mm = new MontageMaker(); mm.makeMontage(imp3, 3, 3, 1.0, 1, (ml - 1), 1, 0, true); return; } } else { // selected a method if (stackSize > 1 && doIstack) { // whole stack // if (doIstackHistogram) {// one global histogram // Object[] result = exec(imp, myMethod, noWhite, noBlack, doIwhite, doIset, doIlog, // doIstackHistogram ); // } // else{ // slice by slice for (int k = 1; k <= stackSize; k++) { imp.setSlice(k); Object[] result = exec(imp, myMethod, radius, par1, par2, doIwhite); } // } imp.setSlice(1); } else { // just one slice Object[] result = exec(imp, myMethod, radius, par1, par2, doIwhite); } // 5 - If all went well, show the image: // not needed here as the source image is binarised } }
/** * @param ip * @param v */ public static void run(final ImageProcessor ip, final float v) { final int w = ip.getWidth(); final int h = ip.getHeight(); final int wh = w * h; final ImageProcessor ipTarget = ip.duplicate(); int numSaturatedPixels = 0; do { numSaturatedPixels = 0; for (int i = 0; i < wh; ++i) if (ip.getf(i) == v) { ++numSaturatedPixels; final int y = i / w; final int x = i % w; float s = 0; float n = 0; if (y > 0) { if (x > 0) { final float tl = ip.getf(x - 1, y - 1); if (tl != v) { s += 0.5f * tl; n += 0.5f; } } final float t = ip.getf(x, y - 1); if (t != v) { s += t; n += 1; } if (x < w - 1) { final float tr = ip.getf(x + 1, y - 1); if (tr != v) { s += 0.5f * tr; n += 0.5f; } } } if (x > 0) { final float l = ip.getf(x - 1, y); if (l != v) { s += l; n += 1; } } if (x < w - 1) { final float r = ip.getf(x + 1, y); if (r != v) { s += r; n += 1; } } if (y < h - 1) { if (x > 0) { final float bl = ip.getf(x - 1, y + 1); if (bl != v) { s += 0.5f * bl; n += 0.5f; } } final float b = ip.getf(x, y + 1); if (b != v) { s += b; n += 1; } if (x < w - 1) { final float br = ip.getf(x + 1, y + 1); if (br != v) { s += 0.5f * br; n += 0.5f; } } } if (n > 0) ipTarget.setf(i, s / n); } ip.setPixels(ipTarget.getPixelsCopy()); } while (numSaturatedPixels > 0); }
/*------------------------------------------------------------------*/ void doIt(ImageProcessor ip) { int width = ip.getWidth(); int height = ip.getHeight(); double hLine[] = new double[width]; double vLine[] = new double[height]; if (!(ip.getPixels() instanceof float[])) { throw new IllegalArgumentException("Float image required"); } switch (operation) { case GRADIENT_MAGNITUDE: { ImageProcessor h = ip.duplicate(); ImageProcessor v = ip.duplicate(); float[] floatPixels = (float[]) ip.getPixels(); float[] floatPixelsH = (float[]) h.getPixels(); float[] floatPixelsV = (float[]) v.getPixels(); getHorizontalGradient(h, FLT_EPSILON); getVerticalGradient(v, FLT_EPSILON); for (int y = 0, k = 0; (y < height); y++) { for (int x = 0; (x < width); x++, k++) { floatPixels[k] = (float) Math.sqrt( floatPixelsH[k] * floatPixelsH[k] + floatPixelsV[k] * floatPixelsV[k]); } stepProgressBar(); } } break; case GRADIENT_DIRECTION: { ImageProcessor h = ip.duplicate(); ImageProcessor v = ip.duplicate(); float[] floatPixels = (float[]) ip.getPixels(); float[] floatPixelsH = (float[]) h.getPixels(); float[] floatPixelsV = (float[]) v.getPixels(); getHorizontalGradient(h, FLT_EPSILON); getVerticalGradient(v, FLT_EPSILON); for (int y = 0, k = 0; (y < height); y++) { for (int x = 0; (x < width); x++, k++) { floatPixels[k] = (float) Math.atan2(floatPixelsH[k], floatPixelsV[k]); } stepProgressBar(); } } break; case LAPLACIAN: { ImageProcessor hh = ip.duplicate(); ImageProcessor vv = ip.duplicate(); float[] floatPixels = (float[]) ip.getPixels(); float[] floatPixelsHH = (float[]) hh.getPixels(); float[] floatPixelsVV = (float[]) vv.getPixels(); getHorizontalHessian(hh, FLT_EPSILON); getVerticalHessian(vv, FLT_EPSILON); for (int y = 0, k = 0; (y < height); y++) { for (int x = 0; (x < width); x++, k++) { floatPixels[k] = (float) (floatPixelsHH[k] + floatPixelsVV[k]); } stepProgressBar(); } } break; case LARGEST_HESSIAN: { ImageProcessor hh = ip.duplicate(); ImageProcessor vv = ip.duplicate(); ImageProcessor hv = ip.duplicate(); float[] floatPixels = (float[]) ip.getPixels(); float[] floatPixelsHH = (float[]) hh.getPixels(); float[] floatPixelsVV = (float[]) vv.getPixels(); float[] floatPixelsHV = (float[]) hv.getPixels(); getHorizontalHessian(hh, FLT_EPSILON); getVerticalHessian(vv, FLT_EPSILON); getCrossHessian(hv, FLT_EPSILON); for (int y = 0, k = 0; (y < height); y++) { for (int x = 0; (x < width); x++, k++) { floatPixels[k] = (float) (0.5 * (floatPixelsHH[k] + floatPixelsVV[k] + Math.sqrt( 4.0 * floatPixelsHV[k] * floatPixelsHV[k] + (floatPixelsHH[k] - floatPixelsVV[k]) * (floatPixelsHH[k] - floatPixelsVV[k])))); } stepProgressBar(); } } break; case SMALLEST_HESSIAN: { ImageProcessor hh = ip.duplicate(); ImageProcessor vv = ip.duplicate(); ImageProcessor hv = ip.duplicate(); float[] floatPixels = (float[]) ip.getPixels(); float[] floatPixelsHH = (float[]) hh.getPixels(); float[] floatPixelsVV = (float[]) vv.getPixels(); float[] floatPixelsHV = (float[]) hv.getPixels(); getHorizontalHessian(hh, FLT_EPSILON); getVerticalHessian(vv, FLT_EPSILON); getCrossHessian(hv, FLT_EPSILON); for (int y = 0, k = 0; (y < height); y++) { for (int x = 0; (x < width); x++, k++) { floatPixels[k] = (float) (0.5 * (floatPixelsHH[k] + floatPixelsVV[k] - Math.sqrt( 4.0 * floatPixelsHV[k] * floatPixelsHV[k] + (floatPixelsHH[k] - floatPixelsVV[k]) * (floatPixelsHH[k] - floatPixelsVV[k])))); } stepProgressBar(); } } break; case HESSIAN_ORIENTATION: { ImageProcessor hh = ip.duplicate(); ImageProcessor vv = ip.duplicate(); ImageProcessor hv = ip.duplicate(); float[] floatPixels = (float[]) ip.getPixels(); float[] floatPixelsHH = (float[]) hh.getPixels(); float[] floatPixelsVV = (float[]) vv.getPixels(); float[] floatPixelsHV = (float[]) hv.getPixels(); getHorizontalHessian(hh, FLT_EPSILON); getVerticalHessian(vv, FLT_EPSILON); getCrossHessian(hv, FLT_EPSILON); for (int y = 0, k = 0; (y < height); y++) { for (int x = 0; (x < width); x++, k++) { if (floatPixelsHV[k] < 0.0) { floatPixels[k] = (float) (-0.5 * Math.acos( (floatPixelsHH[k] - floatPixelsVV[k]) / Math.sqrt( 4.0 * floatPixelsHV[k] * floatPixelsHV[k] + (floatPixelsHH[k] - floatPixelsVV[k]) * (floatPixelsHH[k] - floatPixelsVV[k])))); } else { floatPixels[k] = (float) (0.5 * Math.acos( (floatPixelsHH[k] - floatPixelsVV[k]) / Math.sqrt( 4.0 * floatPixelsHV[k] * floatPixelsHV[k] + (floatPixelsHH[k] - floatPixelsVV[k]) * (floatPixelsHH[k] - floatPixelsVV[k])))); } } stepProgressBar(); } } break; default: throw new IllegalArgumentException("Invalid operation"); } ip.resetMinAndMax(); imp.updateAndDraw(); } /* end doIt */