@Override protected Frame rebalance(final Frame original_fr, boolean local, final String name) { if (original_fr == null) return null; if (_parms._force_load_balance) { int original_chunks = original_fr.anyVec().nChunks(); _job.update(0, "Load balancing " + name.substring(name.length() - 5) + " data..."); int chunks = desiredChunks(original_fr, local); if (!_parms._reproducible) { if (original_chunks >= chunks) { if (!_parms._quiet_mode) Log.info( "Dataset already contains " + original_chunks + " chunks. No need to rebalance."); return original_fr; } } else { // reproducible, set chunks to 1 assert chunks == 1; if (!_parms._quiet_mode) Log.warn("Reproducibility enforced - using only 1 thread - can be slow."); if (original_chunks == 1) return original_fr; } if (!_parms._quiet_mode) Log.info( "Rebalancing " + name.substring(name.length() - 5) + " dataset into " + chunks + " chunks."); Key newKey = Key.make(name + ".chks" + chunks); RebalanceDataSet rb = new RebalanceDataSet(original_fr, newKey, chunks); H2O.submitTask(rb).join(); Frame rebalanced_fr = DKV.get(newKey).get(); Scope.track(rebalanced_fr); return rebalanced_fr; } return original_fr; }
/** * Train a Deep Learning neural net model * * @param model Input model (e.g., from initModel(), or from a previous training run) * @return Trained model */ public final DeepLearningModel trainModel(DeepLearningModel model) { Frame validScoreFrame = null; Frame train, trainScoreFrame; try { // if (checkpoint == null && !quiet_mode) logStart(); //if checkpoint is given, some // Job's params might be uninitialized (but the restarted model's parameters are correct) if (model == null) { model = DKV.get(dest()).get(); } Log.info( "Model category: " + (_parms._autoencoder ? "Auto-Encoder" : isClassifier() ? "Classification" : "Regression")); final long model_size = model.model_info().size(); Log.info( "Number of model parameters (weights/biases): " + String.format("%,d", model_size)); model.write_lock(_job); _job.update(0, "Setting up training data..."); final DeepLearningParameters mp = model.model_info().get_params(); // temporary frames of the same "name" as the orig _train/_valid (asking the parameter's // Key, not the actual frame) // Note: don't put into DKV or they would overwrite the _train/_valid frames! Frame tra_fr = new Frame(mp._train, _train.names(), _train.vecs()); Frame val_fr = _valid != null ? new Frame(mp._valid, _valid.names(), _valid.vecs()) : null; train = tra_fr; if (model._output.isClassifier() && mp._balance_classes) { _job.update(0, "Balancing class distribution of training data..."); float[] trainSamplingFactors = new float [train .lastVec() .domain() .length]; // leave initialized to 0 -> will be filled up below if (mp._class_sampling_factors != null) { if (mp._class_sampling_factors.length != train.lastVec().domain().length) throw new IllegalArgumentException( "class_sampling_factors must have " + train.lastVec().domain().length + " elements"); trainSamplingFactors = mp._class_sampling_factors.clone(); // clone: don't modify the original } train = sampleFrameStratified( train, train.lastVec(), train.vec(model._output.weightsName()), trainSamplingFactors, (long) (mp._max_after_balance_size * train.numRows()), mp._seed, true, false); Vec l = train.lastVec(); Vec w = train.vec(model._output.weightsName()); MRUtils.ClassDist cd = new MRUtils.ClassDist(l); model._output._modelClassDist = _weights != null ? cd.doAll(l, w).rel_dist() : cd.doAll(l).rel_dist(); } model.training_rows = train.numRows(); if (_weights != null && _weights.min() == 0 && _weights.max() == 1 && _weights.isInt()) { model.training_rows = Math.round(train.numRows() * _weights.mean()); Log.warn( "Not counting " + (train.numRows() - model.training_rows) + " rows with weight=0 towards an epoch."); } Log.info("One epoch corresponds to " + model.training_rows + " training data rows."); trainScoreFrame = sampleFrame( train, mp._score_training_samples, mp._seed); // training scoring dataset is always sampled uniformly from the training // dataset if (trainScoreFrame != train) Scope.track(trainScoreFrame); if (!_parms._quiet_mode) Log.info("Number of chunks of the training data: " + train.anyVec().nChunks()); if (val_fr != null) { model.validation_rows = val_fr.numRows(); // validation scoring dataset can be sampled in multiple ways from the given validation // dataset if (model._output.isClassifier() && mp._balance_classes && mp._score_validation_sampling == DeepLearningParameters.ClassSamplingMethod.Stratified) { _job.update(0, "Sampling validation data (stratified)..."); validScoreFrame = sampleFrameStratified( val_fr, val_fr.lastVec(), val_fr.vec(model._output.weightsName()), null, mp._score_validation_samples > 0 ? mp._score_validation_samples : val_fr.numRows(), mp._seed + 1, false /* no oversampling */, false); } else { _job.update(0, "Sampling validation data..."); validScoreFrame = sampleFrame(val_fr, mp._score_validation_samples, mp._seed + 1); if (validScoreFrame != val_fr) Scope.track(validScoreFrame); } if (!_parms._quiet_mode) Log.info( "Number of chunks of the validation data: " + validScoreFrame.anyVec().nChunks()); } // Set train_samples_per_iteration size (cannot be done earlier since this depends on // whether stratified sampling is done) model.actual_train_samples_per_iteration = computeTrainSamplesPerIteration(mp, model.training_rows, model); // Determine whether shuffling is enforced if (mp._replicate_training_data && (model.actual_train_samples_per_iteration == model.training_rows * (mp._single_node_mode ? 1 : H2O.CLOUD.size())) && !mp._shuffle_training_data && H2O.CLOUD.size() > 1 && !mp._reproducible) { if (!mp._quiet_mode) Log.info( "Enabling training data shuffling, because all nodes train on the full dataset (replicated training data)."); mp._shuffle_training_data = true; } if (!mp._shuffle_training_data && model.actual_train_samples_per_iteration == model.training_rows && train.anyVec().nChunks() == 1) { if (!mp._quiet_mode) Log.info( "Enabling training data shuffling to avoid training rows in the same order over and over (no Hogwild since there's only 1 chunk)."); mp._shuffle_training_data = true; } // if (!mp._quiet_mode) Log.info("Initial model:\n" + model.model_info()); long now = System.currentTimeMillis(); model._timeLastIterationEnter = now; if (_parms._autoencoder) { _job.update(0, "Scoring null model of autoencoder..."); if (!mp._quiet_mode) Log.info("Scoring the null model of the autoencoder."); model.doScoring( trainScoreFrame, validScoreFrame, _job._key, 0, false); // get the null model reconstruction error } // put the initial version of the model into DKV model.update(_job); model.total_setup_time_ms += now - _job.start_time(); Log.info("Total setup time: " + PrettyPrint.msecs(model.total_setup_time_ms, true)); Log.info("Starting to train the Deep Learning model."); _job.update(0, "Training..."); // main loop for (; ; ) { model.iterations++; model.set_model_info( mp._epochs == 0 ? model.model_info() : H2O.CLOUD.size() > 1 && mp._replicate_training_data ? (mp._single_node_mode ? new DeepLearningTask2( _job._key, train, model.model_info(), rowFraction(train, mp, model), model.iterations) .doAll(Key.make(H2O.SELF)) .model_info() : // replicated data + single node mode new DeepLearningTask2( _job._key, train, model.model_info(), rowFraction(train, mp, model), model.iterations) .doAllNodes() .model_info()) : // replicated data + multi-node mode new DeepLearningTask( _job._key, model.model_info(), rowFraction(train, mp, model), model.iterations) .doAll(train) .model_info()); // distributed data (always in multi-node mode) if (stop_requested() && !timeout()) break; // cancellation if (!model.doScoring( trainScoreFrame, validScoreFrame, _job._key, model.iterations, false)) break; // finished training (or early stopping or convergence) if (timeout()) break; // stop after scoring } // replace the model with the best model so far (if it's better) if (!stop_requested() && _parms._overwrite_with_best_model && model.actual_best_model_key != null && _parms._nfolds == 0) { DeepLearningModel best_model = DKV.getGet(model.actual_best_model_key); if (best_model != null && best_model.loss() < model.loss() && Arrays.equals(best_model.model_info().units, model.model_info().units)) { if (!_parms._quiet_mode) Log.info("Setting the model to be the best model so far (based on scoring history)."); DeepLearningModelInfo mi = best_model.model_info().deep_clone(); // Don't cheat - count full amount of training samples, since that's the amount of // training it took to train (without finding anything better) mi.set_processed_global(model.model_info().get_processed_global()); mi.set_processed_local(model.model_info().get_processed_local()); model.set_model_info(mi); model.update(_job); model.doScoring(trainScoreFrame, validScoreFrame, _job._key, model.iterations, true); assert (best_model.loss() == model.loss()); } } // store coefficient names for future use // possibly change model.model_info().data_info().coefNames(); if (!_parms._quiet_mode) { Log.info( "=============================================================================================================================================================================="); if (stop_requested()) { Log.info("Deep Learning model training was interrupted."); } else { Log.info("Finished training the Deep Learning model."); Log.info(model); } Log.info( "=============================================================================================================================================================================="); } } finally { if (model != null) { model.deleteElasticAverageModels(); model.unlock(_job); if (model.actual_best_model_key != null) { assert (model.actual_best_model_key != model._key); DKV.remove(model.actual_best_model_key); } } } return model; }