Пример #1
0
  /**
   * Gender.
   *
   * @param clusterSetBase the cluster set base
   * @param clusterSet the cluster set
   * @param featureSet the feature set
   * @param parameter the parameter
   * @return the cluster set
   * @throws Exception the exception
   */
  public ClusterSet gender(
      ClusterSet clusterSetBase,
      ClusterSet clusterSet,
      AudioFeatureSet featureSet,
      Parameter parameter)
      throws Exception {
    String mask = parameter.getParameterSegmentationOutputFile().getMask();
    boolean oldByCluster = parameter.getParameterScore().isByCluster();
    boolean oldGender = parameter.getParameterScore().isGender();

    String FeatureFormat = "featureSetTransformation";
    AudioFeatureSet featureSet2 =
        loadFeature(featureSet, parameter, clusterSet, FeatureFormat + ",1:3:2:0:0:0,13,1:1:0:0");
    String dir = "ester2";
    InputStream genderInputStream = getClass().getResourceAsStream(dir + "/gender.gmms");
    GMMArrayList genderVector =
        MainTools.readGMMContainer(genderInputStream, parameter.getParameterModel());
    parameter.getParameterScore().setByCluster(true);
    parameter.getParameterScore().setGender(true);
    ClusterSet clustersGender = MScore.make(featureSet2, clusterSet, genderVector, null, parameter);
    if (parameter.getParameterDiarization().isSaveAllStep()) {
      parameter.getParameterSegmentationOutputFile().setMask(mask + ".g.seg");
      MainTools.writeClusterSet(parameter, clustersGender, false);
    }
    parameter.getParameterSegmentationOutputFile().setMask(mask);
    parameter.getParameterScore().setByCluster(oldByCluster);
    parameter.getParameterScore().setGender(oldGender);

    return clustersGender;
  }
Пример #2
0
  /**
   * Clustering.
   *
   * @param threshold the threshold
   * @param clusterSet the cluster set
   * @param featureSet the feature set
   * @param parameter the parameter
   * @return the cluster set
   * @throws Exception the exception
   */
  public ClusterSet clustering(
      double threshold, ClusterSet clusterSet, AudioFeatureSet featureSet, Parameter parameter)
      throws Exception {
    String mask = parameter.getParameterSegmentationOutputFile().getMask();
    String oldMethod = parameter.getParameterClustering().getMethodAsString();
    double oldThreshold = parameter.getParameterClustering().getThreshold();
    String oldModelKind = parameter.getParameterModel().getModelKindAsString();
    int oldNumberOfComponent = parameter.getParameterModel().getNumberOfComponents();

    // --- begin NEW v 1.14 / 4.16 / 4.18 / 4.20---
    parameter.getParameterClustering().setMethod("h");
    // parameter.getParameterClustering().setMethod("sr");
    // --- end NEW v 1.14 ---
    parameter.getParameterClustering().setThreshold(threshold);
    logger.finer(
        "method:"
            + parameter.getParameterClustering().getMethod()
            + " thr:"
            + parameter.getParameterClustering().getThreshold());
    parameter.getParameterModel().setModelKind("FULL");
    parameter.getParameterModel().setNumberOfComponents(1);
    ClusterSet clustersHClust = MClust.make(featureSet, clusterSet, parameter, null);
    if (parameter.getParameterDiarization().isSaveAllStep()) {
      parameter.getParameterSegmentationOutputFile().setMask(mask + ".h.seg");
      MainTools.writeClusterSet(parameter, clustersHClust, false);
    }

    parameter.getParameterSegmentation().setMethod(oldMethod);
    parameter.getParameterModel().setNumberOfComponents(oldNumberOfComponent);
    parameter.getParameterModel().setModelKind(oldModelKind);
    parameter.getParameterClustering().setThreshold(oldThreshold);
    parameter.getParameterSegmentationOutputFile().setMask(mask);

    return clustersHClust;
  }
Пример #3
0
  /**
   * Clustering linear.
   *
   * @param threshold the threshold
   * @param clusterSet the cluster set
   * @param featureSet the feature set
   * @param parameter the parameter
   * @return the cluster set
   * @throws Exception the exception
   */
  public ClusterSet clusteringLinear(
      double threshold, ClusterSet clusterSet, AudioFeatureSet featureSet, Parameter parameter)
      throws Exception {
    String mask = parameter.getParameterSegmentationOutputFile().getMask();
    String oldMethod = parameter.getParameterClustering().getMethodAsString();
    double oldThreshold = parameter.getParameterClustering().getThreshold();
    String oldModelKind = parameter.getParameterModel().getModelKindAsString();
    int oldNumberOfComponent = parameter.getParameterModel().getNumberOfComponents();

    parameter.getParameterModel().setModelKind("FULL");
    parameter.getParameterModel().setNumberOfComponents(1);
    parameter.getParameterClustering().setMethod("l");
    parameter.getParameterClustering().setThreshold(threshold);

    ClusterSet clustersLClust = MClust.make(featureSet, clusterSet, parameter, null);
    if (parameter.getParameterDiarization().isSaveAllStep()) {
      parameter.getParameterSegmentationOutputFile().setMask(mask + ".l.seg");
      MainTools.writeClusterSet(parameter, clustersLClust, false);
    }
    parameter.getParameterSegmentation().setMethod(oldMethod);
    parameter.getParameterModel().setNumberOfComponents(oldNumberOfComponent);
    parameter.getParameterModel().setModelKind(oldModelKind);
    parameter.getParameterClustering().setThreshold(oldThreshold);
    parameter.getParameterSegmentationOutputFile().setMask(mask);

    return clustersLClust;
  }
Пример #4
0
  /**
   * Segmentation.
   *
   * @param method the method
   * @param kind the kind
   * @param clusterSet the cluster set
   * @param featureSet the feature set
   * @param parameter the parameter
   * @return the cluster set
   * @throws Exception the exception
   */
  public ClusterSet segmentation(
      String method,
      String kind,
      ClusterSet clusterSet,
      AudioFeatureSet featureSet,
      Parameter parameter)
      throws Exception {
    String mask = parameter.getParameterSegmentationOutputFile().getMask();

    String oldMethod = parameter.getParameterSegmentation().getMethodAsString();
    int oldNumberOfComponent = parameter.getParameterModel().getNumberOfComponents();
    String oldModelKind = parameter.getParameterModel().getModelKindAsString();

    parameter.getParameterSegmentation().setMethod(method);
    parameter.getParameterModel().setNumberOfComponents(1);
    parameter.getParameterModel().setModelKind(kind);
    ClusterSet clustersSeg = new ClusterSet();
    MSeg.make(featureSet, clusterSet, clustersSeg, parameter);
    if (parameter.getParameterDiarization().isSaveAllStep()) {
      parameter.getParameterSegmentationOutputFile().setMask(mask + ".s.seg");
      MainTools.writeClusterSet(parameter, clustersSeg, false);
    }

    parameter.getParameterSegmentation().setMethod(oldMethod);
    parameter.getParameterModel().setNumberOfComponents(oldNumberOfComponent);
    parameter.getParameterModel().setModelKind(oldModelKind);
    parameter.getParameterSegmentationOutputFile().setMask(mask);

    return clustersSeg;
  }
Пример #5
0
  /**
   * Decode.
   *
   * @param nbComp the nb comp
   * @param threshold the threshold
   * @param clusterSet the cluster set
   * @param featureSet the feature set
   * @param parameter the parameter
   * @return the cluster set
   * @throws Exception the exception
   */
  public ClusterSet decode(
      int nbComp,
      double threshold,
      ClusterSet clusterSet,
      AudioFeatureSet featureSet,
      Parameter parameter)
      throws Exception {
    String mask = parameter.getParameterSegmentationOutputFile().getMask();
    String oldModelKind = parameter.getParameterModel().getModelKindAsString();
    int oldNumberOfComponent = parameter.getParameterModel().getNumberOfComponents();

    // ** Train GMM for each cluster.
    // ** GMM is a 8 component gaussian with diagonal covariance matrix
    // ** one GMM = one speaker = one cluster
    // ** initialization of the GMMs :
    // ** - same global covariance for each gaussian,
    // ** - 1/8 for the weight,
    // ** - means are initialized with the mean of 10 successive vectors taken
    parameter.getParameterModel().setModelKind("DIAG");
    parameter.getParameterModel().setNumberOfComponents(nbComp);
    GMMArrayList gmmInitVect = new GMMArrayList(clusterSet.clusterGetSize());
    MTrainInit.make(featureSet, clusterSet, gmmInitVect, parameter);
    // ** EM training of the initialized GMM
    GMMArrayList gmmVect = new GMMArrayList(clusterSet.clusterGetSize());
    MTrainEM.make(featureSet, clusterSet, gmmInitVect, gmmVect, parameter);

    // ** set the penalty to move from the state i to the state j, penalty to move from i to i is
    // equal to 0
    parameter.getParameterDecoder().setDecoderPenalty(String.valueOf(threshold));
    // ** make Viterbi decoding using the 8-GMM set
    // ** one state = one GMM = one speaker = one cluster
    ClusterSet clustersDClust = MDecode.make(featureSet, clusterSet, gmmVect, parameter);
    if (parameter.getParameterDiarization().isSaveAllStep()) {
      parameter.getParameterSegmentationOutputFile().setMask(mask + ".d.seg");
      MainTools.writeClusterSet(parameter, clustersDClust, false);
    }
    // ** move the boundaries of the segment in low energy part of the signal
    ClusterSet clustersAdjClust = SAdjSeg.make(featureSet, clustersDClust, parameter);
    if (parameter.getParameterDiarization().isSaveAllStep()) {
      parameter.getParameterSegmentationOutputFile().setMask(mask + ".adj.seg");
      MainTools.writeClusterSet(parameter, clustersAdjClust, false);
    }

    parameter.getParameterSegmentationOutputFile().setMask(mask);
    parameter.getParameterModel().setNumberOfComponents(oldNumberOfComponent);
    parameter.getParameterModel().setModelKind(oldModelKind);
    return clustersAdjClust;
  }
Пример #6
0
  /**
   * Sanity check.
   *
   * @param clusterSet the cluster set
   * @param featureSet the feature set
   * @param parameter the parameter
   * @return the cluster set
   * @throws DiarizationException the diarization exception
   * @throws IOException Signals that an I/O exception has occurred.
   * @throws ParserConfigurationException the parser configuration exception
   * @throws SAXException the sAX exception
   * @throws TransformerException the transformer exception
   */
  public ClusterSet sanityCheck(
      ClusterSet clusterSet, AudioFeatureSet featureSet, Parameter parameter)
      throws DiarizationException, IOException, ParserConfigurationException, SAXException,
          TransformerException {
    String mask = parameter.getParameterSegmentationOutputFile().getMask();

    ClusterSet clustersSegInit = new ClusterSet();
    MSegInit.make(featureSet, clusterSet, clustersSegInit, parameter);
    clustersSegInit.collapse();
    if (parameter.getParameterDiarization().isSaveAllStep()) {
      parameter.getParameterSegmentationOutputFile().setMask(mask + ".i.seg");
      MainTools.writeClusterSet(parameter, clustersSegInit, false);
    }

    parameter.getParameterSegmentationOutputFile().setMask(mask);

    return clustersSegInit;
  }
Пример #7
0
  /**
   * Info.
   *
   * @param parameter the parameter
   * @param programName the program name
   * @throws IllegalArgumentException the illegal argument exception
   * @throws IllegalAccessException the illegal access exception
   * @throws InvocationTargetException the invocation target exception
   */
  public static void info(Parameter parameter, String programName)
      throws IllegalArgumentException, IllegalAccessException, InvocationTargetException {
    if (parameter.help) {
      logger.config(parameter.getSeparator2());
      logger.config("name = " + programName);
      logger.config(parameter.getSeparator());
      parameter.logShow();

      parameter.getParameterInputFeature().logAll(); // fInMask
      logger.config(parameter.getSeparator());
      parameter.getParameterSegmentationInputFile().logAll(); // sInMask
      parameter.getParameterSegmentationInputFile2().logAll(); // sInMask
      parameter.getParameterSegmentationOutputFile().logAll(); // sOutMask
      logger.config(parameter.getSeparator());
      parameter.getParameterDiarization().logAll();
      logger.config(parameter.getSeparator());
    }
  }
Пример #8
0
  /**
   * Speaker clustering.
   *
   * @param threshold the threshold
   * @param method the method
   * @param clusterSetBase the cluster set base
   * @param clustersSet the clusters set
   * @param featureSet the feature set
   * @param parameter the parameter
   * @return the cluster set
   * @throws Exception the exception
   */
  public ClusterSet speakerClustering(
      double threshold,
      String method,
      ClusterSet clusterSetBase,
      ClusterSet clustersSet,
      AudioFeatureSet featureSet,
      Parameter parameter)
      throws Exception {
    String mask = parameter.getParameterSegmentationOutputFile().getMask();
    String oldMethod = parameter.getParameterClustering().getMethodAsString();
    double oldThreshold = parameter.getParameterClustering().getThreshold();
    String oldEMControl = parameter.getParameterEM().getEMControl();
    int oldNTop = parameter.getParameterTopGaussian().getScoreNTop();
    String oldSpeechDetectorMethod = parameter.getParameterInputFeature().getSpeechMethodAsString();
    double oldSpeechDetectorThreshold = parameter.getParameterInputFeature().getSpeechThreshold();

    // ** bottom up hierarchical classification using GMMs
    // ** one for each cluster, trained by MAP adaptation of a UBM composed of the fusion of
    // 4x128GMM
    // ** the feature normalization use feature mapping technique, after the cluster frames are
    // centered and reduced
    String dir = "ester2";
    InputStream ubmInputStream = getClass().getResourceAsStream(dir + "/ubm.gmm");
    GMMArrayList ubmVect =
        MainTools.readGMMContainer(ubmInputStream, parameter.getParameterModel());
    GMM ubm = ubmVect.get(0);
    // int nbCep = ubm.getDimension() + 1;
    String FeatureFormat = "featureSetTransformation";

    parameter.getParameterInputFeature().setSpeechMethod("E");
    parameter.getParameterInputFeature().setSpeechThreshold(0.1);

    AudioFeatureSet featureSet2 =
        loadFeature(
            featureSet, parameter, clustersSet, FeatureFormat + ",1:3:2:0:0:0,13,1:1:300:4");
    parameter.getParameterClustering().setMethod(method);
    parameter.getParameterClustering().setThreshold(threshold);
    parameter.getParameterEM().setEMControl("1,5,0.01");
    parameter.getParameterTopGaussian().setScoreNTop(5);
    // ---- Begin NEW v 1.13 ---

    // if (parameter.parameterSpeechDetector.useSpeechDetection() == true) {
    // MSpeechDetector.EnergyThresholdMethod(clustersSet, featureSet, parameter);
    // }
    // ---- End NEW v 1.13 ---

    boolean saveAll = parameter.getParameterDiarization().isSaveAllStep();
    parameter.getParameterDiarization().setSaveAllStep(false);
    ClusterSet clustersCLR = MClust.make(featureSet2, clustersSet, parameter, ubm);
    parameter.getParameterDiarization().setSaveAllStep(saveAll);

    parameter.getParameterSegmentationOutputFile().setMask(mask);
    if (parameter.getParameterDiarization().isSaveAllStep()) {
      parameter.getParameterSegmentationOutputFile().setMask(mask + ".c.seg");
      MainTools.writeClusterSet(parameter, clustersCLR, false);
    }
    parameter.getParameterSegmentationOutputFile().setMask(mask);
    parameter.getParameterClustering().setMethod(oldMethod);
    parameter.getParameterClustering().setThreshold(oldThreshold);
    parameter.getParameterEM().setEMControl(oldEMControl);
    parameter.getParameterTopGaussian().setScoreNTop(oldNTop);
    parameter.getParameterInputFeature().setSpeechMethod(oldSpeechDetectorMethod);
    parameter.getParameterInputFeature().setSpeechThreshold(oldSpeechDetectorThreshold);

    return clustersCLR;
  }
Пример #9
0
  /**
   * Speech.
   *
   * @param threshold the threshold
   * @param clustersSetBase the clusters set base
   * @param clustersSegInit the clusters seg init
   * @param clustersDClust the clusters d clust
   * @param featureSet the feature set
   * @param parameter the parameter
   * @return the cluster set
   * @throws Exception the exception
   */
  public ClusterSet speech(
      String threshold,
      ClusterSet clustersSetBase,
      ClusterSet clustersSegInit,
      ClusterSet clustersDClust,
      AudioFeatureSet featureSet,
      Parameter parameter)
      throws Exception {
    String mask = parameter.getParameterSegmentationOutputFile().getMask();
    String oldDecoderPenalty = parameter.getParameterDecoder().getDecoderPenaltyAsString();

    // ** Reload MFCC, remove energy and add delta
    String FeatureFormat = "featureSetTransformation";
    AudioFeatureSet featureSet2 =
        loadFeature(
            featureSet, parameter, clustersSetBase, FeatureFormat + ",1:3:2:0:0:0,13,0:0:0:0");
    String dir = "ester2";
    // ** load the model : 8 GMMs with 64 diagonal components
    InputStream pmsInputStream = getClass().getResourceAsStream(dir + "/sms.gmms");
    GMMArrayList pmsVect =
        MainTools.readGMMContainer(pmsInputStream, parameter.getParameterModel());
    // ** set penalties for the i to j states
    // ** 10 for the first and second model corresponding to boad/narrowband silence
    // ** 50 for the other jingle speech (f0 f2 f3 fx), jingle and music

    parameter.getParameterDecoder().setDecoderPenalty(threshold);
    ClusterSet clustersPMSClust = MDecode.make(featureSet2, clustersSegInit, pmsVect, parameter);
    if (parameter.getParameterDiarization().isSaveAllStep()) {
      parameter.getParameterSegmentationOutputFile().setMask(mask + ".sms.seg");
      MainTools.writeClusterSet(parameter, clustersPMSClust, false);
    }

    parameter.getParameterSegmentationOutputFile().setMask(mask);
    parameter.getParameterDecoder().setDecoderPenalty(oldDecoderPenalty);

    // ** Filter the segmentation adj acoording the sms segmentation
    // ** add 25 frames to all speech segments
    // ** remove silence part if silence segment is less than 25 frames
    // ** if a speech segment is less than 150 frames, it will be merge to the left or right closest
    // segments

    int oldSegmentPadding = parameter.getParameterFilter().getSegmentPadding();
    int oldSilenceMinimumLength = parameter.getParameterFilter().getSilenceMinimumLength();
    int oldSpeechMinimumLength = parameter.getParameterFilter().getSpeechMinimumLength();
    String oldSegmentationFilterFile =
        parameter.getParameterSegmentationFilterFile().getClusterFilterName();
    parameter.getParameterFilter().setSegmentPadding(25);
    parameter.getParameterFilter().setSilenceMinimumLength(25);
    parameter.getParameterFilter().setSpeechMinimumLength(150);

    ClusterSet clustersFltClust = SFilter.make(clustersDClust, clustersPMSClust, parameter);
    if (parameter.getParameterDiarization().isSaveAllStep()) {
      parameter.getParameterSegmentationOutputFile().setMask(mask + ".flt.seg");
      MainTools.writeClusterSet(parameter, clustersFltClust, false);
      parameter.getParameterSegmentationOutputFile().setMask(mask);
    }

    // ** segments of more than 20s are split according of silence present in the pms or using a gmm
    // silence detector
    InputStream silenceInputStream = getClass().getResourceAsStream(dir + "/s.gmms");
    GMMArrayList sVect =
        MainTools.readGMMContainer(silenceInputStream, parameter.getParameterModel());
    parameter.getParameterSegmentationFilterFile().setClusterFilterName("iS,iT,j");
    ClusterSet clustersSplitClust =
        SSplitSeg.make(featureSet2, clustersFltClust, sVect, clustersPMSClust, parameter);
    if (parameter.getParameterDiarization().isSaveAllStep()) {
      parameter.getParameterSegmentationOutputFile().setMask(mask + ".spl.seg");
      MainTools.writeClusterSet(parameter, clustersSplitClust, false);
      parameter.getParameterSegmentationOutputFile().setMask(mask);
    }

    parameter.getParameterSegmentationFilterFile().setClusterFilterName(oldSegmentationFilterFile);
    parameter.getParameterFilter().setSegmentPadding(oldSegmentPadding);
    parameter.getParameterFilter().setSilenceMinimumLength(oldSilenceMinimumLength);
    parameter.getParameterFilter().setSpeechMinimumLength(oldSpeechMinimumLength);

    return clustersSplitClust;
  }