/** Unit tests the <tt>GabowSCC</tt> data type. */ public static void main(String[] args) { In in = new In(args[0]); Digraph G = new Digraph(in); GabowSCC scc = new GabowSCC(G); // number of connected components int M = scc.count(); StdOut.println(M + " components"); // compute list of vertices in each strong component Queue<Integer>[] components = (Queue<Integer>[]) new Queue[M]; for (int i = 0; i < M; i++) { components[i] = new Queue<Integer>(); } for (int v = 0; v < G.V(); v++) { components[scc.id(v)].enqueue(v); } // print results for (int i = 0; i < M; i++) { for (int v : components[i]) { StdOut.print(v + " "); } StdOut.println(); } }
/** Unit tests the <tt>DepthFirstOrder</tt> data type. */ public static void main(String[] args) { In in = new In(args[0]); Digraph G = new Digraph(in); DepthFirstOrder dfs = new DepthFirstOrder(G); StdOut.println(" v pre post"); StdOut.println("--------------"); for (int v = 0; v < G.V(); v++) { StdOut.printf("%4d %4d %4d\n", v, dfs.pre(v), dfs.post(v)); } StdOut.print("Preorder: "); for (int v : dfs.pre()) { StdOut.print(v + " "); } StdOut.println(); StdOut.print("Postorder: "); for (int v : dfs.post()) { StdOut.print(v + " "); } StdOut.println(); StdOut.print("Reverse postorder: "); for (int v : dfs.reversePost()) { StdOut.print(v + " "); } StdOut.println(); }
/** * Determines a depth-first order for the digraph <tt>G</tt>. * * @param G the digraph */ public DepthFirstOrder(Digraph G) { pre = new int[G.V()]; post = new int[G.V()]; postorder = new Queue<Integer>(); preorder = new Queue<Integer>(); marked = new boolean[G.V()]; for (int v = 0; v < G.V(); v++) if (!marked[v]) dfs(G, v); }
// does the id[] array contain the strongly connected components? private boolean check(Digraph G) { TransitiveClosure tc = new TransitiveClosure(G); for (int v = 0; v < G.V(); v++) { for (int w = 0; w < G.V(); w++) { if (stronglyConnected(v, w) != (tc.reachable(v, w) && tc.reachable(w, v))) return false; } } return true; }
/** * Computes the strong components of the digraph <tt>G</tt>. * * @param G the digraph */ public GabowSCC(Digraph G) { marked = new boolean[G.V()]; stack1 = new Stack<Integer>(); stack2 = new Stack<Integer>(); id = new int[G.V()]; preorder = new int[G.V()]; for (int v = 0; v < G.V(); v++) id[v] = -1; for (int v = 0; v < G.V(); v++) { if (!marked[v]) dfs(G, v); } // check that id[] gives strong components assert check(G); }
// run DFS in digraph G from vertex v and compute preorder/postorder private void dfs(Digraph G, int v) { marked[v] = true; pre[v] = preCounter++; preorder.enqueue(v); for (int w : G.adj(v)) { if (!marked[w]) { dfs(G, w); } } postorder.enqueue(v); post[v] = postCounter++; }
private void dfs(Digraph G, int v) { marked[v] = true; preorder[v] = pre++; stack1.push(v); stack2.push(v); for (int w : G.adj(v)) { if (!marked[w]) dfs(G, w); else if (id[w] == -1) { while (preorder[stack2.peek()] > preorder[w]) stack2.pop(); } } // found strong component containing v if (stack2.peek() == v) { stack2.pop(); int w; do { w = stack1.pop(); id[w] = count; } while (w != v); count++; } }