/** * 用当前模型在测试集上进行测试 输出正确率 * * @param testSet */ public void test(InstanceSet testSet) { double err = 0; double errorAll = 0; int total = 0; for (int i = 0; i < testSet.size(); i++) { Instance inst = testSet.getInstance(i); total += ((int[]) inst.getTarget()).length; Results pred = (Results) msolver.getBest(inst, 1); double l = loss.calc(pred.getPredAt(0), inst.getTarget()); if (l > 0) { // 预测错误 errorAll += 1.0; err += l; } } if (!simpleOutput) { System.out.print("Test:\t"); System.out.print(total - err); System.out.print('/'); System.out.print(total); System.out.print("\tTag acc:"); } else { System.out.print('\t'); } System.out.print(1 - err / total); if (!simpleOutput) { System.out.print("\tSentence acc:"); System.out.println(1 - errorAll / testSet.size()); } System.out.println(); }
public Results getBest(Instance inst, int n) { Integer target = null; if (isUseTarget) target = (Integer) inst.getTarget(); SparseVector fv = featureGen.getVector(inst); // 每个类对应的内积 double[] sw = new double[alphabet.size()]; Callable<Double>[] c = new Multiplesolve[numClass]; Future<Double>[] f = new Future[numClass]; for (int i = 0; i < numClass; i++) { c[i] = new Multiplesolve(fv, i); f[i] = pool.submit(c[i]); } // 执行任务并获取Future对象 for (int i = 0; i < numClass; i++) { try { sw[i] = (Double) f[i].get(); } catch (Exception e) { e.printStackTrace(); return null; } } Results res = new Results(n); if (target != null) { res.buildOracle(); } Iterator<Integer> it = leafs.iterator(); while (it.hasNext()) { double score = 0.0; Integer i = it.next(); if (tree != null) { // 计算含层次信息的内积 ArrayList<Integer> anc = tree.getPath(i); for (int j = 0; j < anc.size(); j++) { score += sw[anc.get(j)]; } } else { score = sw[i]; } // 给定目标范围是,只计算目标范围的值 if (target != null && target.equals(i)) { res.addOracle(score, i); } else { res.addPred(score, i); } } return res; }
/** 训练 */ public Linear train(InstanceSet trainingList, InstanceSet testList) { int numSamples = trainingList.size(); count = 0; for (int ii = 0; ii < trainingList.size(); ii++) { Instance inst = trainingList.getInstance(ii); count += ((int[]) inst.getTarget()).length; } System.out.println("Chars Number: " + count); double oldErrorRate = Double.MAX_VALUE; // 开始循环 long beginTime, endTime; long beginTimeIter, endTimeIter; beginTime = System.currentTimeMillis(); double pE = 0; int iter = 0; int frac = numSamples / 10; while (iter++ < maxIter) { if (!simpleOutput) { System.out.print("iter:"); System.out.print(iter + "\t"); } double err = 0; double errorAll = 0; beginTimeIter = System.currentTimeMillis(); int progress = frac; for (int ii = 0; ii < numSamples; ii++) { Instance inst = trainingList.getInstance(ii); Results pred = (Results) msolver.getBest(inst, 1); double l = loss.calc(pred.getPredAt(0), inst.getTarget()); if (l > 0) { // 预测错误,更新权重 errorAll += 1.0; err += l; update.update(inst, weights, pred.getPredAt(0), c); } else { if (pred.size() > 1) update.update(inst, weights, pred.getPredAt(1), c); } if (!simpleOutput && ii % progress == 0) { // 显示进度 System.out.print('.'); progress += frac; } } double errRate = err / count; endTimeIter = System.currentTimeMillis(); if (!simpleOutput) { System.out.println("\ttime:" + (endTimeIter - beginTimeIter) / 1000.0 + "s"); System.out.print("Train:"); System.out.print("\tTag acc:"); } System.out.print(1 - errRate); if (!simpleOutput) { System.out.print("\tSentence acc:"); System.out.print(1 - errorAll / numSamples); System.out.println(); } if (testList != null) { test(testList); } if (Math.abs(errRate - oldErrorRate) < eps) { System.out.println("Convergence!"); break; } oldErrorRate = errRate; if (interim) { Linear p = new Linear(msolver, trainingList.getAlphabetFactory()); try { p.saveTo("tmp.model"); } catch (IOException e) { System.err.println("write model error!"); } } if (isOptimized) { // 模型优化,去掉不显著的特征 int[] idx = MyArrays.getTop(weights.clone(), threshold, false); System.out.print("Opt: weight numbers: " + MyArrays.countNoneZero(weights)); MyArrays.set(weights, idx, 0.0); System.out.println(" -> " + MyArrays.countNoneZero(weights)); } } endTime = System.currentTimeMillis(); System.out.println("done!"); System.out.println("time escape:" + (endTime - beginTime) / 1000.0 + "s"); Linear p = new Linear(msolver, trainingList.getAlphabetFactory()); return p; }