/** * 用当前模型在测试集上进行测试 输出正确率 * * @param testSet */ public void test(InstanceSet testSet) { double err = 0; double errorAll = 0; int total = 0; for (int i = 0; i < testSet.size(); i++) { Instance inst = testSet.getInstance(i); total += ((int[]) inst.getTarget()).length; Results pred = (Results) msolver.getBest(inst, 1); double l = loss.calc(pred.getPredAt(0), inst.getTarget()); if (l > 0) { // 预测错误 errorAll += 1.0; err += l; } } if (!simpleOutput) { System.out.print("Test:\t"); System.out.print(total - err); System.out.print('/'); System.out.print(total); System.out.print("\tTag acc:"); } else { System.out.print('\t'); } System.out.print(1 - err / total); if (!simpleOutput) { System.out.print("\tSentence acc:"); System.out.println(1 - errorAll / testSet.size()); } System.out.println(); }
/** 训练 */ public Linear train(InstanceSet trainingList, InstanceSet testList) { int numSamples = trainingList.size(); count = 0; for (int ii = 0; ii < trainingList.size(); ii++) { Instance inst = trainingList.getInstance(ii); count += ((int[]) inst.getTarget()).length; } System.out.println("Chars Number: " + count); double oldErrorRate = Double.MAX_VALUE; // 开始循环 long beginTime, endTime; long beginTimeIter, endTimeIter; beginTime = System.currentTimeMillis(); double pE = 0; int iter = 0; int frac = numSamples / 10; while (iter++ < maxIter) { if (!simpleOutput) { System.out.print("iter:"); System.out.print(iter + "\t"); } double err = 0; double errorAll = 0; beginTimeIter = System.currentTimeMillis(); int progress = frac; for (int ii = 0; ii < numSamples; ii++) { Instance inst = trainingList.getInstance(ii); Results pred = (Results) msolver.getBest(inst, 1); double l = loss.calc(pred.getPredAt(0), inst.getTarget()); if (l > 0) { // 预测错误,更新权重 errorAll += 1.0; err += l; update.update(inst, weights, pred.getPredAt(0), c); } else { if (pred.size() > 1) update.update(inst, weights, pred.getPredAt(1), c); } if (!simpleOutput && ii % progress == 0) { // 显示进度 System.out.print('.'); progress += frac; } } double errRate = err / count; endTimeIter = System.currentTimeMillis(); if (!simpleOutput) { System.out.println("\ttime:" + (endTimeIter - beginTimeIter) / 1000.0 + "s"); System.out.print("Train:"); System.out.print("\tTag acc:"); } System.out.print(1 - errRate); if (!simpleOutput) { System.out.print("\tSentence acc:"); System.out.print(1 - errorAll / numSamples); System.out.println(); } if (testList != null) { test(testList); } if (Math.abs(errRate - oldErrorRate) < eps) { System.out.println("Convergence!"); break; } oldErrorRate = errRate; if (interim) { Linear p = new Linear(msolver, trainingList.getAlphabetFactory()); try { p.saveTo("tmp.model"); } catch (IOException e) { System.err.println("write model error!"); } } if (isOptimized) { // 模型优化,去掉不显著的特征 int[] idx = MyArrays.getTop(weights.clone(), threshold, false); System.out.print("Opt: weight numbers: " + MyArrays.countNoneZero(weights)); MyArrays.set(weights, idx, 0.0); System.out.println(" -> " + MyArrays.countNoneZero(weights)); } } endTime = System.currentTimeMillis(); System.out.println("done!"); System.out.println("time escape:" + (endTime - beginTime) / 1000.0 + "s"); Linear p = new Linear(msolver, trainingList.getAlphabetFactory()); return p; }