Пример #1
0
  void storeLatestWorkbenchGraph() {
    Graph latestWorkbenchGraph = workbench.getGraph();

    if (latestWorkbenchGraph.getNumNodes() == 0) {
      return;
    }

    SearchParams searchParams = algorithmRunner.getParams();

    try {
      Graph graph = new MarshalledObject<Graph>(latestWorkbenchGraph).get();

      if (graph == null) {
        throw new NullPointerException("Null graph");
      }

      if (searchParams != null) {
        searchParams.setSourceGraph(graph);
      }
    } catch (IOException e) {
      e.printStackTrace();

      if (searchParams != null) {
        searchParams.setSourceGraph(null);
      }
    } catch (ClassNotFoundException e) {
      if (searchParams != null) {
        searchParams.setSourceGraph(null);
      }

      e.printStackTrace();
    }
  }
  /**
   * Provides methods for estimating a Bayes IM from an existing BayesIM and a discrete dataset
   * using EM (Expectation Maximization). The data columns in the given data must be equal to a
   * variable in the given Bayes IM but the latter may contain variables which don't occur in the
   * dataset (latent variables). The first argument of the constructoris the BayesPm whose graph
   * contains latent and observed variables. The second is the dataset of observed variables;
   * missing value codes may be present.
   */
  public EmBayesEstimator(BayesPm bayesPm, DataSet dataSet) {

    if (bayesPm == null) {
      throw new NullPointerException();
    }

    if (dataSet == null) {
      throw new NullPointerException();
    }

    List<Node> observedVars = new ArrayList<Node>();

    this.bayesPm = bayesPm;
    this.dataSet = dataSet;

    // this.variables = Collections.unmodifiableList(vars);
    graph = bayesPm.getDag();
    this.nodes = new Node[graph.getNumNodes()];

    Iterator<Node> it = graph.getNodes().iterator();

    for (int i = 0; i < this.nodes.length; i++) {
      this.nodes[i] = it.next();
      // System.out.println("node " + i + " " + nodes[i]);
    }

    for (int i = 0; i < this.nodes.length; i++) {
      if (nodes[i].getNodeType() == NodeType.MEASURED) {
        observedVars.add(bayesPm.getVariable(nodes[i]));
      }
    }

    // Make sure variables in dataset are measured variables in the BayesPM
    //        for (Node dataSetVariable : this.dataSet.getVariables()) {
    //            if (!observedVars.contains(dataSetVariable)) {
    //                throw new IllegalArgumentException(
    //                        "Some var in the dataset is not a " +
    //                                "measured variable in the Bayes net");
    //            }
    //        }

    // Make sure all measured variables in the BayesPm are in the discrete dataset
    for (Node observedVar : observedVars) {
      try {
        this.dataSet.getVariable(observedVar.getName());
      } catch (Exception e) {
        throw new IllegalArgumentException(
            "Some observed var in the Bayes net " + "is not in the dataset: " + observedVar);
      }
    }

    findBayesNetObserved(); // Sets bayesPmObs

    initialize();
  }
  public void closeEmptySessions() {
    JInternalFrame[] frames = desktopPane.getAllFramesInLayer(0);

    for (JInternalFrame frame : frames) {
      Object o = frame.getContentPane().getComponents()[0];

      if (o instanceof SessionEditor) {
        SessionEditor sessionEditor = (SessionEditor) o;
        SessionEditorWorkbench workbench = sessionEditor.getSessionWorkbench();
        Graph graph = workbench.getGraph();
        if (graph.getNumNodes() == 0) {
          frame.dispose();
        }
      }
    }
  }