public double logPdf(double[] x) { Matrix W = new Matrix(x, dim, dim); double logDensity = 0; // System.err.println("here"); // double det = 0; // try { // det = W.determinant(); // } catch (IllegalDimension illegalDimension) { // illegalDimension.printStackTrace(); // } // if( det < 0 ) { // System.err.println("not positive definite"); // return Double.NEGATIVE_INFINITY; // } try { logDensity = Math.log(W.determinant()); logDensity *= -0.5; logDensity *= df + dim + 1; Matrix product = S.product(W.inverse()); for (int i = 0; i < dim; i++) logDensity -= 0.5 * product.component(i, i); } catch (IllegalDimension illegalDimension) { illegalDimension.printStackTrace(); } logDensity += logNormalizationConstant; return logDensity; }
private void computeNormalizationConstant() { logNormalizationConstant = 0; try { logNormalizationConstant = df / 2.0 * Math.log(new Matrix(scaleMatrix).determinant()); } catch (IllegalDimension illegalDimension) { illegalDimension.printStackTrace(); } logNormalizationConstant -= df * dim / 2.0 * Math.log(2); logNormalizationConstant -= dim * (dim - 1) / 4.0 * Math.log(Math.PI); for (int i = 1; i <= dim; i++) { logNormalizationConstant -= GammaFunction.lnGamma((df + 1 - i) / 2.0); } }