Пример #1
0
    public Tree<String> getBestParseOld(List<String> sentence) {
      // TODO: This implements the CKY algorithm

      CounterMap<String, String> parseScores = new CounterMap<String, String>();

      System.out.println(sentence.toString());
      // First deal with the lexicons
      int index = 0;
      int span = 1; // All spans are 1 at the lexicon level
      for (String word : sentence) {
        for (String tag : lexicon.getAllTags()) {
          double score = lexicon.scoreTagging(word, tag);
          if (score >= 0.0) { // This lexicon may generate this word
            // We use a counter map in order to store the scores for this sentence parse.
            parseScores.setCount(index + " " + (index + span), tag, score);
          }
        }
        index = index + 1;
      }

      // handle unary rules now
      HashMap<String, Triplet<Integer, String, String>> backHash =
          new HashMap<
              String, Triplet<Integer, String, String>>(); // hashmap to store back propation

      // System.out.println("Lexicons found");
      Boolean added = true;

      while (added) {
        added = false;
        for (index = 0; index < sentence.size(); index++) {
          // For each index+ span pair, get the counter.
          Counter<String> count = parseScores.getCounter(index + " " + (index + span));
          PriorityQueue<String> countAsPQ = count.asPriorityQueue();
          while (countAsPQ.hasNext()) {
            String entry = countAsPQ.next();
            // System.out.println("I am fine here!!");
            List<UnaryRule> unaryRules = grammar.getUnaryRulesByChild(entry);
            for (UnaryRule rule : unaryRules) {
              // These are the unary rules which might give rise to the above preterminal
              double prob =
                  rule.getScore() * parseScores.getCount(index + " " + (index + span), entry);
              if (prob > parseScores.getCount(index + " " + (index + span), rule.parent)) {
                parseScores.setCount(index + " " + (index + span), rule.parent, prob);
                backHash.put(
                    index + " " + (index + span) + " " + rule.parent,
                    new Triplet<Integer, String, String>(-1, entry, null));
                added = true;
              }
            }
          }
        }
      }
      // System.out.println("Lexicon unaries dealt with");

      // Now work with the grammar to produce higher level probabilities
      for (span = 2; span <= sentence.size(); span++) {
        for (int begin = 0; begin <= (sentence.size() - span); begin++) {
          int end = begin + span;
          for (int split = begin + 1; split <= end - 1; split++) {
            Counter<String> countLeft = parseScores.getCounter(begin + " " + split);
            Counter<String> countRight = parseScores.getCounter(split + " " + end);
            // List<BinaryRule> leftRules= new ArrayList<BinaryRule>();
            HashMap<Integer, BinaryRule> leftMap = new HashMap<Integer, BinaryRule>();
            // List<BinaryRule> rightRules=new ArrayList<BinaryRule>();
            HashMap<Integer, BinaryRule> rightMap = new HashMap<Integer, BinaryRule>();

            for (String entry : countLeft.keySet()) {
              for (BinaryRule rule : grammar.getBinaryRulesByLeftChild(entry)) {
                if (!leftMap.containsKey(rule.hashCode())) {
                  leftMap.put(rule.hashCode(), rule);
                }
              }
            }

            for (String entry : countRight.keySet()) {
              for (BinaryRule rule : grammar.getBinaryRulesByRightChild(entry)) {
                if (!rightMap.containsKey(rule.hashCode())) {
                  rightMap.put(rule.hashCode(), rule);
                }
              }
            }

            // System.out.println("About to enter the rules loops");
            for (Integer ruleHash : leftMap.keySet()) {
              if (rightMap.containsKey(ruleHash)) {
                BinaryRule ruleRight = rightMap.get(ruleHash);
                double prob =
                    ruleRight.getScore()
                        * parseScores.getCount(begin + " " + split, ruleRight.leftChild)
                        * parseScores.getCount(split + " " + end, ruleRight.rightChild);
                // System.out.println(begin+" "+ end +" "+ ruleRight.parent+ " "+ prob);
                if (prob > parseScores.getCount(begin + " " + end, ruleRight.parent)) {
                  // System.out.println(begin+" "+ end +" "+ ruleRight.parent+ " "+ prob);
                  // System.out.println("parentrule :"+ ruleRight.getParent());
                  parseScores.setCount(begin + " " + end, ruleRight.getParent(), prob);
                  backHash.put(
                      begin + " " + end + " " + ruleRight.parent,
                      new Triplet<Integer, String, String>(
                          split, ruleRight.leftChild, ruleRight.rightChild));
                }
              }
            }

            // System.out.println("Exited rules loop");

          }
          // System.out.println("Grammar found for " + begin + " "+ end);
          // Now handle unary rules
          added = true;
          while (added) {
            added = false;
            Counter<String> count = parseScores.getCounter(begin + " " + end);
            PriorityQueue<String> countAsPriorityQueue = count.asPriorityQueue();
            while (countAsPriorityQueue.hasNext()) {
              String entry = countAsPriorityQueue.next();
              List<UnaryRule> unaryRules = grammar.getUnaryRulesByChild(entry);
              for (UnaryRule rule : unaryRules) {
                double prob = rule.getScore() * parseScores.getCount(begin + " " + (end), entry);
                if (prob > parseScores.getCount(begin + " " + (end), rule.parent)) {
                  parseScores.setCount(begin + " " + (end), rule.parent, prob);

                  backHash.put(
                      begin + " " + (end) + " " + rule.parent,
                      new Triplet<Integer, String, String>(-1, entry, null));
                  added = true;
                }
              }
            }
          }

          // System.out.println("Unaries dealt for " + begin + " "+ end);

        }
      }

      // Create and return the parse tree
      Tree<String> parseTree = new Tree<String>("null");
      // System.out.println(parseScores.getCounter(0+" "+sentence.size()).toString());
      String parent = parseScores.getCounter(0 + " " + sentence.size()).argMax();
      if (parent == null) {
        System.out.println(parseScores.getCounter(0 + " " + sentence.size()).toString());
        System.out.println("THIS IS WEIRD");
      }
      parent = "ROOT";
      parseTree = getParseTreeOld(sentence, backHash, 0, sentence.size(), parent);
      // System.out.println("PARSE SCORES");
      //	System.out.println(parseScores.toString());
      // System.out.println("BACK HASH");
      // System.out.println(backHash.toString());
      //	parseTree = addRoot(parseTree);
      // System.out.println(parseTree.toString());
      // return parseTree;
      return TreeAnnotations.unAnnotateTree(parseTree);
    }
Пример #2
0
    public Tree<String> getBestParse(List<String> sentence) {
      // This implements the CKY algorithm
      int nEntries = sentence.size();

      // hashmap to store back rules
      HashMap<Triplet<Integer, Integer, String>, Triplet<Integer, String, String>> backHash =
          new HashMap<Triplet<Integer, Integer, String>, Triplet<Integer, String, String>>();

      // more efficient access with arrays, but must cast each time :(
      @SuppressWarnings("unchecked")
      Counter<String>[][] parseScores = (Counter<String>[][]) (new Counter[nEntries][nEntries]);

      for (int i = 0; i < nEntries; i++) {
        for (int j = 0; j < nEntries; j++) {
          parseScores[i][j] = new Counter<String>();
        }
      }

      System.out.println(sentence.toString());
      // First deal with the lexicons
      int index = 0;
      int span = 1; // All spans are 1 at the lexicon level
      for (String word : sentence) {
        for (String tag : lexicon.getAllTags()) {
          double score = lexicon.scoreTagging(word, tag);
          if (score >= 0.0) { // This lexicon may generate this word
            // We use a counter map in order to store the scores for this sentence parse.
            parseScores[index][index + span - 1].setCount(tag, score);
          }
        }
        index = index + 1;
      }

      // handle unary rules now

      // System.out.println("Lexicons found");
      boolean added = true;

      while (added) {
        added = false;
        for (index = 0; index < sentence.size(); index++) {
          // For each index+ span pair, get the counter.
          Counter<String> count = parseScores[index][index + span - 1];
          PriorityQueue<String> countAsPQ = count.asPriorityQueue();
          while (countAsPQ.hasNext()) {
            String entry = countAsPQ.next();
            // System.out.println("I am fine here!!");
            List<UnaryRule> unaryRules = grammar.getUnaryRulesByChild(entry);
            for (UnaryRule rule : unaryRules) {
              // These are the unary rules which might give rise to the above preterminal
              double prob = rule.getScore() * parseScores[index][index + span - 1].getCount(entry);
              if (prob > parseScores[index][index + span - 1].getCount(rule.parent)) {
                parseScores[index][index + span - 1].setCount(rule.parent, prob);
                backHash.put(
                    new Triplet<Integer, Integer, String>(index, index + span, rule.parent),
                    new Triplet<Integer, String, String>(-1, entry, null));
                added = true;
              }
            }
          }
        }
      }
      // System.out.println("Lexicon unaries dealt with");

      // Now work with the grammar to produce higher level probabilities
      for (span = 2; span <= sentence.size(); span++) {
        for (int begin = 0; begin <= (sentence.size() - span); begin++) {
          int end = begin + span;
          for (int split = begin + 1; split <= end - 1; split++) {
            Counter<String> countLeft = parseScores[begin][split - 1];
            Counter<String> countRight = parseScores[split][end - 1];
            // List<BinaryRule> leftRules= new ArrayList<BinaryRule>();
            HashMap<Integer, BinaryRule> leftMap = new HashMap<Integer, BinaryRule>();
            // List<BinaryRule> rightRules=new ArrayList<BinaryRule>();
            HashMap<Integer, BinaryRule> rightMap = new HashMap<Integer, BinaryRule>();

            for (String entry : countLeft.keySet()) {
              for (BinaryRule rule : grammar.getBinaryRulesByLeftChild(entry)) {
                if (!leftMap.containsKey(rule.hashCode())) {
                  leftMap.put(rule.hashCode(), rule);
                }
              }
            }

            for (String entry : countRight.keySet()) {
              for (BinaryRule rule : grammar.getBinaryRulesByRightChild(entry)) {
                if (!rightMap.containsKey(rule.hashCode())) {
                  rightMap.put(rule.hashCode(), rule);
                }
              }
            }

            // System.out.println("About to enter the rules loops");
            for (Integer ruleHash : leftMap.keySet()) {
              if (rightMap.containsKey(ruleHash)) {
                BinaryRule ruleRight = rightMap.get(ruleHash);
                double prob =
                    ruleRight.getScore()
                        * parseScores[begin][split - 1].getCount(ruleRight.leftChild)
                        * parseScores[split][end - 1].getCount(ruleRight.rightChild);
                // System.out.println(begin+" "+ end +" "+ ruleRight.parent+ " "+ prob);
                if (prob > parseScores[begin][end - 1].getCount(ruleRight.parent)) {
                  // System.out.println(begin+" "+ end +" "+ ruleRight.parent+ " "+ prob);
                  // System.out.println("parentrule :"+ ruleRight.getParent());
                  parseScores[begin][end - 1].setCount(ruleRight.getParent(), prob);
                  backHash.put(
                      new Triplet<Integer, Integer, String>(begin, end, ruleRight.parent),
                      new Triplet<Integer, String, String>(
                          split, ruleRight.leftChild, ruleRight.rightChild));
                }
              }
            }

            // System.out.println("Exited rules loop");

          }
          // System.out.println("Grammar found for " + begin + " "+ end);
          // Now handle unary rules
          added = true;
          while (added) {
            added = false;
            Counter<String> count = parseScores[begin][end - 1];
            PriorityQueue<String> countAsPriorityQueue = count.asPriorityQueue();
            while (countAsPriorityQueue.hasNext()) {
              String entry = countAsPriorityQueue.next();
              List<UnaryRule> unaryRules = grammar.getUnaryRulesByChild(entry);
              for (UnaryRule rule : unaryRules) {
                double prob = rule.getScore() * parseScores[begin][end - 1].getCount(entry);
                if (prob > parseScores[begin][end - 1].getCount(rule.parent)) {
                  parseScores[begin][end - 1].setCount(rule.parent, prob);

                  backHash.put(
                      new Triplet<Integer, Integer, String>(begin, end, rule.parent),
                      new Triplet<Integer, String, String>(-1, entry, null));
                  added = true;
                }
              }
            }
          }

          // System.out.println("Unaries dealt for " + begin + " "+ end);

        }
      }

      // Create and return the parse tree
      Tree<String> parseTree = new Tree<String>("null");
      // System.out.println(parseScores.getCounter(0+" "+sentence.size()).toString());

      // Pick the argmax
      String parent = parseScores[0][nEntries - 1].argMax();

      // Or pick root. This second one is preferred since sentences are meant to have ROOT as their
      // root node.
      parent = "ROOT";
      parseTree = getParseTree(sentence, backHash, 0, sentence.size(), parent);
      // System.out.println("PARSE SCORES");
      //	System.out.println(parseScores.toString());
      // System.out.println("BACK HASH");
      // System.out.println(backHash.toString());
      //	parseTree = addRoot(parseTree);
      // System.out.println(parseTree.toString());
      // return parseTree;
      return TreeAnnotations.unAnnotateTree(parseTree);
    }