public SelectedSet select(Population population) { int N = population.getN(); int picked, maxPos; double maxFit, currentFit; SelectedSet selectedSet = new SelectedSet(NS); // Initialize an empty population of size NS. for (int i = 0; i < NS; i++) { picked = PORTFOLIO.random.nextInt(N); // Random int between 0 and N-1. maxFit = population.getFitness(picked); maxPos = picked; for (int j = 1; j < tourSize; j++) { picked = PORTFOLIO.random.nextInt(N); currentFit = population.getFitness(picked); if (currentFit > maxFit) { maxFit = currentFit; maxPos = picked; } } selectedSet.setIndividual(i, population.individuals[maxPos], maxFit); } // selectedSet.computeFitnessStatistics(); selectedSet .computeUnivariateFrequencies(); // NOTE!! Class Subset is responsible for computing all // frequencies! return selectedSet; } // END: select(...)
public SelectedSet select(Population population) { int N = population.getN(); SelectedSet selectedSet = new SelectedSet(NS); // Initialize an empty population. int k = N / tourSize; // Number of tournaments within each shuffle. int ks = NS / k; // Number of shuffles with exactly 'k' tournaments. int rs = NS % k; // Number of tournaments within the last shuffle. int ls = ks * k; // Order of the first selection in the last shuffle. We have NS = ls + rs. int maxPos = 0; for (int i = 0; i < ks; i++) { int pos = i * k; // Position of the next selected individual. int[] numbers = shuffle(N); for (int j = 0; j < k * tourSize; j += tourSize) { maxPos = tourSelect(population, selectedSet, numbers, j); selectedSet.setIndividual( pos++, population.individuals[maxPos], population.getFitness(maxPos)); } } int[] numbers = shuffle(N); for (int j = 0; j < rs * tourSize; j += tourSize) { maxPos = tourSelect(population, selectedSet, numbers, j); selectedSet.setIndividual( ls++, population.individuals[maxPos], population.getFitness(maxPos)); } // selectedSet.computeFitnessStatistics(); selectedSet.computeUnivariateFrequencies(); // NOTE!! This is not necessary for SGA! return selectedSet; } // END: select(..).
public SelectedSet select(Population population) { int N = population.getN(); sortedPopulation = new PosFit[N]; for (int i = 0; i < N; i++) sortedPopulation[i] = new PosFit(i, population.getFitness(i)); Arrays.sort(sortedPopulation); // Sort population in ascending order of fitness. SelectedSet selectedSet = new SelectedSet(NS); for (int i = 0; i < NS; i++) { int best = i + N - NS; int position = sortedPopulation[best].getPosition(); double fitness = sortedPopulation[best].getFitness(); selectedSet.setIndividual(i, population.individuals[position], fitness); } // selectedSet.computeFitnessStatistics(); selectedSet .computeUnivariateFrequencies(); // NOTE!! Class Subset is responsible for computing all // frequencies! return selectedSet; }