/** * Returns the type of an element when that element is viewed as a member of, or otherwise * directly contained by, a given type. For example, when viewed as a member of the parameterized * type {@code Set<String>}, the {@code Set.add} method is an {@code ExecutableType} whose * parameter is of type {@code String}. * * @param containing the containing type * @param element the element * @return the type of the element as viewed from the containing type * @throws IllegalArgumentException if the element is not a valid one for the given type */ public TypeMirror asMemberOf(DeclaredType containing, Element element) { Type site = (Type) containing; Symbol sym = (Symbol) element; if (types.asSuper(site, sym.getEnclosingElement()) == null) throw new IllegalArgumentException(sym + "@" + site); return types.memberType(site, sym); }
public List<Type> directSupertypes(TypeMirror t) { validateTypeNotIn(t, EXEC_OR_PKG); Type type = (Type) t; Type sup = types.supertype(type); return (sup == Type.noType || sup == type || sup == null) ? types.interfaces(type) : types.interfaces(type).prepend(sup); }
public PrimitiveType unboxedType(TypeMirror t) { if (t.getKind() != TypeKind.DECLARED) throw new IllegalArgumentException(t.toString()); Type unboxed = types.unboxedType((Type) t); if (!unboxed.isPrimitive()) // only true primitives, not void throw new IllegalArgumentException(t.toString()); return unboxed; }
protected Annotate(Context context) { context.put(annotateKey, this); attr = Attr.instance(context); make = TreeMaker.instance(context); log = Log.instance(context); syms = Symtab.instance(context); names = Names.instance(context); rs = Resolve.instance(context); types = Types.instance(context); cfolder = ConstFold.instance(context); chk = Check.instance(context); }
protected Enter(Context context) { context.put(enterKey, this); log = Log.instance(context); reader = ClassReader.instance(context); make = TreeMaker.instance(context); syms = Symtab.instance(context); chk = Check.instance(context); memberEnter = MemberEnter.instance(context); types = Types.instance(context); annotate = Annotate.instance(context); lint = Lint.instance(context); predefClassDef = make.ClassDef(make.Modifiers(PUBLIC), syms.predefClass.name, null, null, null, null); predefClassDef.sym = syms.predefClass; todo = Todo.instance(context); fileManager = context.get(JavaFileManager.class); }
public void visitClassDef(JCClassDecl tree) { Symbol owner = env.info.scope.owner; Scope enclScope = enterScope(env); ClassSymbol c; if (owner.kind == PCK) { // We are seeing a toplevel class. PackageSymbol packge = (PackageSymbol) owner; for (Symbol q = packge; q != null && q.kind == PCK; q = q.owner) q.flags_field |= EXISTS; c = reader.enterClass(tree.name, packge); packge.members().enterIfAbsent(c); if ((tree.mods.flags & PUBLIC) != 0 && !classNameMatchesFileName(c, env)) { log.error(tree.pos(), "class.public.should.be.in.file", tree.name); } } else { if (!tree.name.isEmpty() && !chk.checkUniqueClassName(tree.pos(), tree.name, enclScope)) { result = null; return; } if (owner.kind == TYP) { // We are seeing a member class. c = reader.enterClass(tree.name, (TypeSymbol) owner); if ((owner.flags_field & INTERFACE) != 0) { tree.mods.flags |= PUBLIC | STATIC; } } else { // We are seeing a local class. c = reader.defineClass(tree.name, owner); c.flatname = chk.localClassName(c); if (!c.name.isEmpty()) chk.checkTransparentClass(tree.pos(), c, env.info.scope); } } tree.sym = c; // Enter class into `compiled' table and enclosing scope. if (chk.compiled.get(c.flatname) != null) { duplicateClass(tree.pos(), c); result = types.createErrorType(tree.name, (TypeSymbol) owner, Type.noType); tree.sym = (ClassSymbol) result.tsym; return; } chk.compiled.put(c.flatname, c); enclScope.enter(c); // Set up an environment for class block and store in `typeEnvs' // table, to be retrieved later in memberEnter and attribution. Env<AttrContext> localEnv = classEnv(tree, env); typeEnvs.put(c, localEnv); // Fill out class fields. c.completer = memberEnter; c.flags_field = chk.checkFlags(tree.pos(), tree.mods.flags, c, tree); c.sourcefile = env.toplevel.sourcefile; c.members_field = new Scope(c); ClassType ct = (ClassType) c.type; if (owner.kind != PCK && (c.flags_field & STATIC) == 0) { // We are seeing a local or inner class. // Set outer_field of this class to closest enclosing class // which contains this class in a non-static context // (its "enclosing instance class"), provided such a class exists. Symbol owner1 = owner; while ((owner1.kind & (VAR | MTH)) != 0 && (owner1.flags_field & STATIC) == 0) { owner1 = owner1.owner; } if (owner1.kind == TYP) { ct.setEnclosingType(owner1.type); } } // Enter type parameters. ct.typarams_field = classEnter(tree.typarams, localEnv); // Add non-local class to uncompleted, to make sure it will be // completed later. if (!c.isLocal() && uncompleted != null) uncompleted.append(c); // System.err.println("entering " + c.fullname + " in " + c.owner);//DEBUG // Recursively enter all member classes. classEnter(tree.defs, localEnv); result = c.type; }
Attribute enterAttributeValue(Type expected, JCExpression tree, Env<AttrContext> env) { // first, try completing the attribution value sym - if a completion // error is thrown, we should recover gracefully, and display an // ordinary resolution diagnostic. try { expected.tsym.complete(); } catch (CompletionFailure e) { log.error(tree.pos(), "cant.resolve", Kinds.kindName(e.sym), e.sym); return new Attribute.Error(expected); } if (expected.isPrimitive() || types.isSameType(expected, syms.stringType)) { Type result = attr.attribExpr(tree, env, expected); if (result.isErroneous()) return new Attribute.Error(expected); if (result.constValue() == null) { log.error(tree.pos(), "attribute.value.must.be.constant"); return new Attribute.Error(expected); } result = cfolder.coerce(result, expected); return new Attribute.Constant(expected, result.constValue()); } if (expected.tsym == syms.classType.tsym) { Type result = attr.attribExpr(tree, env, expected); if (result.isErroneous()) return new Attribute.Error(expected); if (TreeInfo.name(tree) != names._class) { log.error(tree.pos(), "annotation.value.must.be.class.literal"); return new Attribute.Error(expected); } return new Attribute.Class(types, (((JCFieldAccess) tree).selected).type); } if ((expected.tsym.flags() & Flags.ANNOTATION) != 0 || types.isSameType(expected, syms.annotationType)) { if (tree.getTag() != JCTree.ANNOTATION) { log.error(tree.pos(), "annotation.value.must.be.annotation"); expected = syms.errorType; } return enterAnnotation((JCAnnotation) tree, expected, env); } if (expected.tag == TypeTags.ARRAY) { // should really be isArray() if (tree.getTag() != JCTree.NEWARRAY) { tree = make.at(tree.pos).NewArray(null, List.<JCExpression>nil(), List.of(tree)); } JCNewArray na = (JCNewArray) tree; if (na.elemtype != null) { log.error(na.elemtype.pos(), "new.not.allowed.in.annotation"); return new Attribute.Error(expected); } ListBuffer<Attribute> buf = new ListBuffer<Attribute>(); for (List<JCExpression> l = na.elems; l.nonEmpty(); l = l.tail) { buf.append(enterAttributeValue(types.elemtype(expected), l.head, env)); } na.type = expected; return new Attribute.Array(expected, buf.toArray(new Attribute[buf.length()])); } if (expected.tag == TypeTags.CLASS && (expected.tsym.flags() & Flags.ENUM) != 0) { attr.attribExpr(tree, env, expected); Symbol sym = TreeInfo.symbol(tree); if (sym == null || TreeInfo.nonstaticSelect(tree) || sym.kind != Kinds.VAR || (sym.flags() & Flags.ENUM) == 0) { log.error(tree.pos(), "enum.annotation.must.be.enum.constant"); return new Attribute.Error(expected); } VarSymbol enumerator = (VarSymbol) sym; return new Attribute.Enum(expected, enumerator); } if (!expected.isErroneous()) log.error(tree.pos(), "annotation.value.not.allowable.type"); return new Attribute.Error(attr.attribExpr(tree, env, expected)); }
public boolean contains(TypeMirror t1, TypeMirror t2) { validateTypeNotIn(t1, EXEC_OR_PKG); validateTypeNotIn(t2, EXEC_OR_PKG); return types.containsType((Type) t1, (Type) t2); }
public boolean isAssignable(TypeMirror t1, TypeMirror t2) { validateTypeNotIn(t1, EXEC_OR_PKG); validateTypeNotIn(t2, EXEC_OR_PKG); return types.isAssignable((Type) t1, (Type) t2); }
public boolean isSameType(TypeMirror t1, TypeMirror t2) { return types.isSameType((Type) t1, (Type) t2); }
/** * Use a new context. May be called from outside to update internal state for a new * annotation-processing round. */ public void setContext(Context context) { context.put(JavacTypes.class, this); syms = Symtab.instance(context); types = Types.instance(context); }
public TypeMirror capture(TypeMirror t) { validateTypeNotIn(t, EXEC_OR_PKG); return types.capture((Type) t); }
public TypeElement boxedClass(PrimitiveType p) { return types.boxedClass((Type) p); }
public TypeMirror erasure(TypeMirror t) { if (t.getKind() == TypeKind.PACKAGE) throw new IllegalArgumentException(t.toString()); return types.erasure((Type) t); }
public boolean isSubsignature(ExecutableType m1, ExecutableType m2) { return types.isSubSignature((Type) m1, (Type) m2); }