public void updateNodeRotation() { if (mPrev != null && mSimulate) { Quaternion qRot = mRotation.getQuaternion(); mTempQuat.set( mPrev.mWorldRotation.getQ0(), -mPrev.mWorldRotation.getQ1(), -mPrev.mWorldRotation.getQ2(), -mPrev.mWorldRotation.getQ3()); qRot.set(mWorldRotation); qRot.multiply(mTempQuat); qRot.nor(); /* After pointing, the rotation will have an arbitrary "roll" around * the "to" z-axis. We must find the new position of the "up" vector * after rotation. */ // Vec3 dir = qRot.applyTo(BONE_DIR); // Vec3 rolledUp = qRot.applyTo(BONE_ORTH); MathUtil.setVectorToProductOf(mTempVec1, qRot, BONE_DIR); MathUtil.setVectorToProductOf(mTempVec2, qRot, BONE_ORTH); /* We now project this vector and the original "up" vector onto a plane * perpendicular to the "to" vector so that we can find the extra * rotation needed to rotate the rolled "up" vector onto the given * "up" vector. Note that these vectors won't have unit length. */ // Vec3 upProjected = mOrthogonalTarget.subtract(Vec3.dotProduct(mTempVec1, // mOrthogonalTarget), mTempVec1); float dot = Vec3.dotProduct(mTempVec1, mOrthogonalTarget); mTempVec3.set(dot * mTempVec1.x, dot * mTempVec1.y, dot * mTempVec1.z); MathUtil.setVectorToDifferenceOf(mTempVec4, mOrthogonalTarget, mTempVec3); /* Calculate the rotation bring rolledUpProjected onto upProjected. * Note that this rotation will be around the "to" vector (because both * vectors are parallel to the "to" vector after projection). */ // Rotation rollRotation = Rotation.fromTo(mTempVec2, upProjected); // qRot.multiply(rollRotation.getQuaternion()); MathUtil.setQuaternionFromTo(mTempQuat, mTempVec2, mTempVec4); qRot.multiply(mTempQuat); mTempRot.getQuaternion().set(qRot); mTempRot.getQuaternion().multiply(mPhysics.mFold); mActorNode.setRotation(mTempRot); } }
public void setRotation(Quaternion r) { mOriginalRotation.set(r); mRotation.getQuaternion().set(r); mWorldRotation.set(r); mActorNode.setRotation(mRotation); }