Пример #1
0
  /** usage: java HoughLines imageDir\imageName TransformType */
  public static void main(String[] args) {

    String fileName =
        args.length >= 1 ? args[0] : "pic1.png"; // if no params provided, compute the defaut image
    IplImage src = cvLoadImage(fileName, 0);
    IplImage dst;
    IplImage colorDst;
    CvMemStorage storage = cvCreateMemStorage(0);
    CvSeq lines = new CvSeq();

    CanvasFrame source = new CanvasFrame("Source");
    CanvasFrame hough = new CanvasFrame("Hough");
    if (src == null) {
      System.out.println("Couldn't load source image.");
      return;
    }

    dst = cvCreateImage(cvGetSize(src), src.depth(), 1);
    colorDst = cvCreateImage(cvGetSize(src), src.depth(), 3);

    cvCanny(src, dst, 50, 200, 3);
    cvCvtColor(dst, colorDst, CV_GRAY2BGR);

    /*
     * apply the probabilistic hough transform
     * which returns for each line deteced two points ((x1, y1); (x2,y2))
     * defining the detected segment
     */
    if (args.length == 2 && args[1].contentEquals("probabilistic")) {
      System.out.println("Using the Probabilistic Hough Transform");
      lines = cvHoughLines2(dst, storage, CV_HOUGH_PROBABILISTIC, 1, Math.PI / 180, 40, 50, 10);
      for (int i = 0; i <= lines.total(); i++) {
        // from JavaCPP, the equivalent of the C code:
        // CvPoint* line = (CvPoint*)cvGetSeqElem(lines,i);
        // CvPoint first=line[0], second=line[1]
        // is:
        // CvPoint first=line.position(0), secon=line.position(1);

        Pointer line = cvGetSeqElem(lines, i);
        CvPoint pt1 = new CvPoint(line).position(0);
        CvPoint pt2 = new CvPoint(line).position(1);

        System.out.println("Line spotted: ");
        System.out.println("\t pt1: " + pt1);
        System.out.println("\t pt2: " + pt2);
        cvLine(colorDst, pt1, pt2, CV_RGB(255, 0, 0), 3, CV_AA, 0); // draw the segment on the image
      }
    }
    /*
     * Apply the multiscale hough transform which returns for each line two float parameters (rho, theta)
     * rho: distance from the origin of the image to the line
     * theta: angle between the x-axis and the normal line of the detected line
     */
    else if (args.length == 2 && args[1].contentEquals("multiscale")) {
      System.out.println("Using the multiscale Hough Transform"); //
      lines = cvHoughLines2(dst, storage, CV_HOUGH_MULTI_SCALE, 1, Math.PI / 180, 40, 1, 1);
      for (int i = 0; i < lines.total(); i++) {
        CvPoint2D32f point = new CvPoint2D32f(cvGetSeqElem(lines, i));

        float rho = point.x();
        float theta = point.y();

        double a = Math.cos((double) theta), b = Math.sin((double) theta);
        double x0 = a * rho, y0 = b * rho;
        CvPoint
            pt1 =
                new CvPoint((int) Math.round(x0 + 1000 * (-b)), (int) Math.round(y0 + 1000 * (a))),
            pt2 =
                new CvPoint((int) Math.round(x0 - 1000 * (-b)), (int) Math.round(y0 - 1000 * (a)));
        System.out.println("Line spoted: ");
        System.out.println("\t rho= " + rho);
        System.out.println("\t theta= " + theta);
        cvLine(colorDst, pt1, pt2, CV_RGB(255, 0, 0), 3, CV_AA, 0);
      }
    }
    /*
     * Default: apply the standard hough transform. Outputs: same as the multiscale output.
     */
    else {
      System.out.println("Using the Standard Hough Transform");
      lines = cvHoughLines2(dst, storage, CV_HOUGH_STANDARD, 1, Math.PI / 180, 90, 0, 0);
      for (int i = 0; i < lines.total(); i++) {
        CvPoint2D32f point = new CvPoint2D32f(cvGetSeqElem(lines, i));

        float rho = point.x();
        float theta = point.y();

        double a = Math.cos((double) theta), b = Math.sin((double) theta);
        double x0 = a * rho, y0 = b * rho;
        CvPoint
            pt1 =
                new CvPoint((int) Math.round(x0 + 1000 * (-b)), (int) Math.round(y0 + 1000 * (a))),
            pt2 =
                new CvPoint((int) Math.round(x0 - 1000 * (-b)), (int) Math.round(y0 - 1000 * (a)));
        System.out.println("Line spotted: ");
        System.out.println("\t rho= " + rho);
        System.out.println("\t theta= " + theta);
        cvLine(colorDst, pt1, pt2, CV_RGB(255, 0, 0), 3, CV_AA, 0);
      }
    }
    source.showImage(src);
    hough.showImage(colorDst);

    source.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
    hough.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
  }
Пример #2
0
  public void generatePGMFromPic(String srcPath, String file, String destPath) throws Exception {

    String srcFilePath = srcPath + "/" + file;
    System.out.println("Loading image from " + srcFilePath);
    IplImage origImg = cvLoadImage(srcFilePath);

    // convert to grayscale
    IplImage grayImg = IplImage.create(origImg.width(), origImg.height(), IPL_DEPTH_8U, 1);
    cvCvtColor(origImg, grayImg, CV_BGR2GRAY);

    // scale the grayscale (to speed up face detection)
    IplImage smallImg =
        IplImage.create(grayImg.width() / SCALE, grayImg.height() / SCALE, IPL_DEPTH_8U, 1);
    cvResize(grayImg, smallImg, CV_INTER_LINEAR);

    // equalize the small grayscale
    IplImage equImg = IplImage.create(smallImg.width(), smallImg.height(), IPL_DEPTH_8U, 1);
    cvEqualizeHist(smallImg, equImg);

    CvMemStorage storage = CvMemStorage.create();

    CvHaarClassifierCascade cascade = new CvHaarClassifierCascade(cvLoad(CASCADE_FILE));
    System.out.println("Detecting faces...");
    CvSeq faces = cvHaarDetectObjects(equImg, cascade, storage, 1.1, 3, CV_HAAR_DO_CANNY_PRUNING);
    cvClearMemStorage(storage);
    int total = faces.total();
    System.out.println("Found " + total + " face(s)");
    for (int i = 0; i < total; i++) {
      CvRect r = new CvRect(cvGetSeqElem(faces, i));
      cvSetImageROI(
          origImg, cvRect(r.x() * SCALE, r.y() * SCALE, r.width() * SCALE, r.height() * SCALE));
      IplImage origface = cvCreateImage(cvSize(r.width() * SCALE, r.height() * SCALE), 8, 3);

      IplImage smallface = cvCreateImage(cvSize(120, 120), 8, 3);
      cvCopy(origImg, origface);
      cvResize(origface, smallface, CV_INTER_LINEAR);
      cvSaveImage(destPath + "/" + file + i + ".pgm", smallface);
      cvResetImageROI(origImg);
    }
  }