/** usage: java HoughLines imageDir\imageName TransformType */ public static void main(String[] args) { String fileName = args.length >= 1 ? args[0] : "pic1.png"; // if no params provided, compute the defaut image IplImage src = cvLoadImage(fileName, 0); IplImage dst; IplImage colorDst; CvMemStorage storage = cvCreateMemStorage(0); CvSeq lines = new CvSeq(); CanvasFrame source = new CanvasFrame("Source"); CanvasFrame hough = new CanvasFrame("Hough"); if (src == null) { System.out.println("Couldn't load source image."); return; } dst = cvCreateImage(cvGetSize(src), src.depth(), 1); colorDst = cvCreateImage(cvGetSize(src), src.depth(), 3); cvCanny(src, dst, 50, 200, 3); cvCvtColor(dst, colorDst, CV_GRAY2BGR); /* * apply the probabilistic hough transform * which returns for each line deteced two points ((x1, y1); (x2,y2)) * defining the detected segment */ if (args.length == 2 && args[1].contentEquals("probabilistic")) { System.out.println("Using the Probabilistic Hough Transform"); lines = cvHoughLines2(dst, storage, CV_HOUGH_PROBABILISTIC, 1, Math.PI / 180, 40, 50, 10); for (int i = 0; i <= lines.total(); i++) { // from JavaCPP, the equivalent of the C code: // CvPoint* line = (CvPoint*)cvGetSeqElem(lines,i); // CvPoint first=line[0], second=line[1] // is: // CvPoint first=line.position(0), secon=line.position(1); Pointer line = cvGetSeqElem(lines, i); CvPoint pt1 = new CvPoint(line).position(0); CvPoint pt2 = new CvPoint(line).position(1); System.out.println("Line spotted: "); System.out.println("\t pt1: " + pt1); System.out.println("\t pt2: " + pt2); cvLine(colorDst, pt1, pt2, CV_RGB(255, 0, 0), 3, CV_AA, 0); // draw the segment on the image } } /* * Apply the multiscale hough transform which returns for each line two float parameters (rho, theta) * rho: distance from the origin of the image to the line * theta: angle between the x-axis and the normal line of the detected line */ else if (args.length == 2 && args[1].contentEquals("multiscale")) { System.out.println("Using the multiscale Hough Transform"); // lines = cvHoughLines2(dst, storage, CV_HOUGH_MULTI_SCALE, 1, Math.PI / 180, 40, 1, 1); for (int i = 0; i < lines.total(); i++) { CvPoint2D32f point = new CvPoint2D32f(cvGetSeqElem(lines, i)); float rho = point.x(); float theta = point.y(); double a = Math.cos((double) theta), b = Math.sin((double) theta); double x0 = a * rho, y0 = b * rho; CvPoint pt1 = new CvPoint((int) Math.round(x0 + 1000 * (-b)), (int) Math.round(y0 + 1000 * (a))), pt2 = new CvPoint((int) Math.round(x0 - 1000 * (-b)), (int) Math.round(y0 - 1000 * (a))); System.out.println("Line spoted: "); System.out.println("\t rho= " + rho); System.out.println("\t theta= " + theta); cvLine(colorDst, pt1, pt2, CV_RGB(255, 0, 0), 3, CV_AA, 0); } } /* * Default: apply the standard hough transform. Outputs: same as the multiscale output. */ else { System.out.println("Using the Standard Hough Transform"); lines = cvHoughLines2(dst, storage, CV_HOUGH_STANDARD, 1, Math.PI / 180, 90, 0, 0); for (int i = 0; i < lines.total(); i++) { CvPoint2D32f point = new CvPoint2D32f(cvGetSeqElem(lines, i)); float rho = point.x(); float theta = point.y(); double a = Math.cos((double) theta), b = Math.sin((double) theta); double x0 = a * rho, y0 = b * rho; CvPoint pt1 = new CvPoint((int) Math.round(x0 + 1000 * (-b)), (int) Math.round(y0 + 1000 * (a))), pt2 = new CvPoint((int) Math.round(x0 - 1000 * (-b)), (int) Math.round(y0 - 1000 * (a))); System.out.println("Line spotted: "); System.out.println("\t rho= " + rho); System.out.println("\t theta= " + theta); cvLine(colorDst, pt1, pt2, CV_RGB(255, 0, 0), 3, CV_AA, 0); } } source.showImage(src); hough.showImage(colorDst); source.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE); hough.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE); }
public void generatePGMFromPic(String srcPath, String file, String destPath) throws Exception { String srcFilePath = srcPath + "/" + file; System.out.println("Loading image from " + srcFilePath); IplImage origImg = cvLoadImage(srcFilePath); // convert to grayscale IplImage grayImg = IplImage.create(origImg.width(), origImg.height(), IPL_DEPTH_8U, 1); cvCvtColor(origImg, grayImg, CV_BGR2GRAY); // scale the grayscale (to speed up face detection) IplImage smallImg = IplImage.create(grayImg.width() / SCALE, grayImg.height() / SCALE, IPL_DEPTH_8U, 1); cvResize(grayImg, smallImg, CV_INTER_LINEAR); // equalize the small grayscale IplImage equImg = IplImage.create(smallImg.width(), smallImg.height(), IPL_DEPTH_8U, 1); cvEqualizeHist(smallImg, equImg); CvMemStorage storage = CvMemStorage.create(); CvHaarClassifierCascade cascade = new CvHaarClassifierCascade(cvLoad(CASCADE_FILE)); System.out.println("Detecting faces..."); CvSeq faces = cvHaarDetectObjects(equImg, cascade, storage, 1.1, 3, CV_HAAR_DO_CANNY_PRUNING); cvClearMemStorage(storage); int total = faces.total(); System.out.println("Found " + total + " face(s)"); for (int i = 0; i < total; i++) { CvRect r = new CvRect(cvGetSeqElem(faces, i)); cvSetImageROI( origImg, cvRect(r.x() * SCALE, r.y() * SCALE, r.width() * SCALE, r.height() * SCALE)); IplImage origface = cvCreateImage(cvSize(r.width() * SCALE, r.height() * SCALE), 8, 3); IplImage smallface = cvCreateImage(cvSize(120, 120), 8, 3); cvCopy(origImg, origface); cvResize(origface, smallface, CV_INTER_LINEAR); cvSaveImage(destPath + "/" + file + i + ".pgm", smallface); cvResetImageROI(origImg); } }