public SimplePopulation getPopulation(BinaryString template) { SimplePopulation pop = new SimplePopulation(); for (Individual ind : individuals) { pop.addIndividual(ind.getSolution(template)); } return pop; }
// ::::::::::::::::::::::::::: Copyright(c) M@nso 2016 ::::::::::::::::::: /////////////////////////////////////////////////////////////////////////// public static void main(String[] args) { Random rnd = new Random(1223); SimplePopulation mp = new MultiPopulation(); mp.setParameters("500"); mp.setRandomGenerator(rnd); Solution i = new OneMax(); i.setRandomGenerator(rnd); i.setParameters("1000"); mp.createRandom(i); for (int j = 0; j < mp.getNumberOfIndividuals(); j++) { Solution i1 = mp.removeRandom(); Solution i2 = mp.removeRandom(); if (i1.compareTo(i2) > 0) { mp.addIndividual(i1); mp.addIndividual(i1); } else { mp.addIndividual(i2); mp.addIndividual(i2); } } Recombination x = new M_Uniforme(); x.setRandomGenerator(rnd); for (int j = 0; j < mp.getNumberOfIndividuals(); j++) { System.out.println(" i " + j); mp = x.execute(mp); mp.evaluate(); } System.out.println("" + mp); }
public SimplePopulation sampleNewPopulation(SimplePopulation pop) { SimplePopulation newPop = pop.getCleanClone(); BinaryString template = (BinaryString) pop.getIndividual(0); for (int i = 0; i < offspringSize; i++) { newPop.addIndividual(generateInstance(template)); } return newPop; }
public static Population getPopulation(SimplePopulation pop) { Population newPop = new SelectedSet(pop.getNumberOfIndividuals()); newPop.individuals = new Individual[pop.getNumberOfIndividuals()]; for (int i = 0; i < newPop.individuals.length; i++) { newPop.individuals[i] = new Individual((BinaryString) pop.getIndividual(i)); } newPop.computeUnivariateFrequencies(); return newPop; }
@Override public SimplePopulation execute(SimplePopulation parents) { // clean population SimplePopulation newPopulation = parents.getCleanClone(); Solution indiv1; Solution indiv2; // get list of individuals List<Solution> pop = parents.getList(); // raw list of population (parents.pop) int index = 0; while (index < pop.size()) { // iterate all the individuals // first parent indiv1 = pop.get(index++); if (index == pop.size() || random.nextDouble() >= pCrossover) { // insert clone newPopulation.addIndividual(indiv1); continue; } // END: if // second parent indiv2 = pop.get(index++); // :::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: // -------------------- multiset recombination ---------------------- // :::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: // number of recombinations int numberOfRecombinations = Math.min(indiv1.getNumberOfCopies(), indiv2.getNumberOfCopies()); // insert clones of the individual with greather number of copies if (indiv1.getNumberOfCopies() > indiv2.getNumberOfCopies()) { Solution clone = indiv1.getClone(); clone.setNumberOfCopies(indiv1.getNumberOfCopies() - numberOfRecombinations); newPopulation.addIndividual(clone); // add clone } else if (indiv2.getNumberOfCopies() > indiv1.getNumberOfCopies()) { Solution clone = indiv2.getClone(); clone.setNumberOfCopies(indiv2.getNumberOfCopies() - numberOfRecombinations); newPopulation.addIndividual(clone); // add clone } double prob = 0.5; // recombine multiset individuals for (int nCuts = 1; nCuts <= numberOfRecombinations; nCuts++) { // clone multiset individuals to simple individuals Solution clone1 = indiv1.getClone(); clone1.setNumberOfCopies(1); Solution clone2 = indiv2.getClone(); clone2.setNumberOfCopies(1); // execute crossover doCrossover((BinaryString) clone1, (BinaryString) clone2, prob / nCuts); // add individuals newPopulation.addIndividual(clone1); newPopulation.addIndividual(clone2); } } // END : list return newPopulation; }