Пример #1
0
  /**
   * Finds the shortest possible path, measured in number of edges traversed, between two vertices,
   * a and b, in a graph, and returns this distance. The distance between a vertex and itself is
   * zero. Throws NoPathFoundException if there does not exist a path between a and b.
   *
   * @param graph the graph which contains vertices a and b
   * @param a the starting vertex contained in the graph
   * @param b the vertex to be traveled to (end vertex), contained in the same graph as a
   * @return the number of edges traversed to get from a to b along the shortest path
   * @throws NoPathFoundException if there does not exist a path from a to b
   */
  public static int shortestDistance(Graph graph, Vertex a, Vertex b) throws NoPathFoundException {

    Queue<Vertex> nextVertexQueue = new LinkedList<Vertex>();
    HashSet<Vertex> scheduledSet = new HashSet<Vertex>();

    nextVertexQueue.addAll(graph.getDownstreamNeighbors(a));
    scheduledSet.addAll(graph.getDownstreamNeighbors(a));

    int depth = 1;
    while (!nextVertexQueue.isEmpty()) {
      Queue<Vertex> currentVertexQueue = new LinkedList<Vertex>(nextVertexQueue);
      nextVertexQueue = new LinkedList<>();
      while (!currentVertexQueue.isEmpty()) {
        Vertex currentRoot = currentVertexQueue.poll();
        if (currentRoot.equals(b)) return depth;
        else {
          for (Vertex each_child : graph.getDownstreamNeighbors(currentRoot)) {
            if (!scheduledSet.contains(each_child)) {
              nextVertexQueue.add(each_child);
              scheduledSet.add(each_child);
            }
          }
        }
      }
      depth++;
    }
    throw new NoPathFoundException();
  }
Пример #2
0
  /**
   * returns a set of lists that represent all possible breadth-first traversals of the graph. Each
   * traversal is always the shortest possible way to traverse the graph from a starting index. The
   * number of lists in the set represents the possible number of starting vertices.
   *
   * @param graph the graph to be traversed
   * @return Set<List<Vertex>> the set of lists of all possible ways to traverse the graph
   */
  public static Set<List<Vertex>> breadthFirstSearch(Graph graph) {
    // TODO: Representation safety required
    Set<List<Vertex>> result = new HashSet<List<Vertex>>();
    for (Vertex a : graph.getVertices()) {

      Queue<Vertex> nextVertexQueue = new LinkedList<Vertex>();
      HashSet<Vertex> scheduledSet = new HashSet<Vertex>();

      // initialize the first root queue
      nextVertexQueue.addAll(graph.getDownstreamNeighbors(a));
      scheduledSet.addAll(graph.getDownstreamNeighbors(a));

      // one traversal of the graph starting at a vertex a
      List<Vertex> traversal = new LinkedList<Vertex>();
      traversal.add(a);
      // loop until run out of new vertexes to visit
      while (!nextVertexQueue.isEmpty()) {

        // add the current vertex to the traversal
        Vertex currentRoot = nextVertexQueue.poll();
        traversal.add(currentRoot);

        // add children if they aren't already scheduled
        for (Vertex each_child : graph.getDownstreamNeighbors(currentRoot)) {
          if (!scheduledSet.contains(each_child)) {
            nextVertexQueue.add(each_child);
            scheduledSet.add(each_child);
          }
        }
      }

      result.add(traversal);
    }
    return result;
  }
Пример #3
0
  /**
   * traverses the graph using a depth first search algorithm. Returns a set of lists that represent
   * all possible ways to traverse the graph. Each list contains the traversal of the vertices in
   * the graph in the order that they were visited starting from a start index. The number of lists
   * in the set represents all possible starting vertices in the graph.
   *
   * @param graph the graph to be traversed
   * @return Set<List<Vertex>> a set of the lists of all possible ways to traverse the graph.
   */
  public static Set<List<Vertex>> depthFirstSearch(Graph graph) {
    Set<List<Vertex>> result = new HashSet<List<Vertex>>();
    for (Vertex primaryRoot : graph.getVertices()) {
      Stack<Vertex> vertexStack = new Stack<Vertex>();
      HashSet<Vertex> scheduledSet = new HashSet<Vertex>();
      List<Vertex> traversal = new LinkedList<Vertex>();

      vertexStack.add(primaryRoot);
      scheduledSet.add(primaryRoot);
      traversal.add(primaryRoot);

      while (!vertexStack.isEmpty()) {
        boolean noChildLeft = true;
        for (Vertex each_childRoot : graph.getDownstreamNeighbors(vertexStack.peek())) {
          if (!scheduledSet.contains(each_childRoot)) {
            scheduledSet.add(each_childRoot);
            vertexStack.add(each_childRoot);
            traversal.add(each_childRoot);
            noChildLeft = false;
            break;
          }
        }
        if (noChildLeft) {
          vertexStack.pop();
        }
      }
      result.add(traversal);
    }
    return result;
  }
Пример #4
0
  /**
   * Finds the common downstream vertices such that for each downstream vertex v, a and b are both
   * one edge down from a. Returns an empty list if none exist.
   *
   * @param graph non-empty graph representation
   * @param a Vertex contained within the graph
   * @param b Vertex contained within the graph
   * @return A list of vertices that are the common downstream vertices of a and b
   */
  public static List<Vertex> commonDownstreamVertices(Graph graph, Vertex a, Vertex b) {
    List<Vertex> aList = graph.getDownstreamNeighbors(a);
    List<Vertex> bList = graph.getDownstreamNeighbors(b);
    List<Vertex> commonDownStreamList = new LinkedList<Vertex>();

    for (Vertex aVertex : aList) {
      for (Vertex bVertex : bList) {
        if (aVertex.equals(bVertex)) {
          commonDownStreamList.add(aVertex);
        }
      }
    }
    return commonDownStreamList;
  }