public List<RandomVariable> forward_backward(List<String> perceptions) { RandomVariable forwardMessages[] = new RandomVariable[perceptions.size() + 1]; RandomVariable backwardMessage = priorDistribution.createUnitBelief(); RandomVariable smoothedBeliefs[] = new RandomVariable[perceptions.size() + 1]; forwardMessages[0] = priorDistribution; smoothedBeliefs[0] = null; // populate forward messages for (int i = 0; i < perceptions.size(); i++) { // N.B i starts at 1, // not zero forwardMessages[i + 1] = forward(forwardMessages[i], perceptions.get(i)); } for (int i = perceptions.size(); i > 0; i--) { RandomVariable smoothed = priorDistribution.duplicate(); smoothed.updateFrom(forwardMessages[i].asMatrix().arrayTimes(backwardMessage.asMatrix())); smoothed.normalize(); smoothedBeliefs[i] = smoothed; backwardMessage = calculate_next_backward_message( forwardMessages[i], backwardMessage, perceptions.get(i - 1)); } return Arrays.asList(smoothedBeliefs); }
public RandomVariable perceptionUpdate(RandomVariable aBelief, String perception) { RandomVariable newBelief = aBelief.duplicate(); // one way - use matrices Matrix beliefMatrix = aBelief.asMatrix(); Matrix o_matrix = sensorModel.asMatrix(perception); Matrix updated = o_matrix.times(beliefMatrix); newBelief.updateFrom(updated); newBelief.normalize(); return newBelief; // alternate way of doing this. clearer in intent. // for (String state : aBelief.states()){ // double probabilityOfPerception= sensorModel.get(state,perception); // newBelief.setProbabilityOf(state,probabilityOfPerception * // aBelief.getProbabilityOf(state)); // } }
public RandomVariable calculate_next_backward_message( RandomVariable forwardBelief, RandomVariable present_backward_message, String perception) { RandomVariable result = present_backward_message.duplicate(); // System.out.println("fb :-calculating new backward message"); // System.out.println("fb :-diagonal matrix from sens model = "); Matrix oMatrix = sensorModel.asMatrix(perception); // System.out.println(oMatrix); Matrix transitionMatrix = transitionModel.asMatrix(); // action // should // be // passed // in // here? // System.out.println("fb :-present backward message = " // +present_backward_message); Matrix backwardMatrix = transitionMatrix.times(oMatrix.times(present_backward_message.asMatrix())); Matrix resultMatrix = backwardMatrix.arrayTimes(forwardBelief.asMatrix()); result.updateFrom(resultMatrix); result.normalize(); // System.out.println("fb :-normalized new backward message = " // +result); return result; }