private State newUTF8State() {
   State s = new State();
   if (utf8StateCount == utf8States.length) {
     final State[] newArray =
         new State[ArrayUtil.oversize(1 + utf8StateCount, RamUsageEstimator.NUM_BYTES_OBJECT_REF)];
     System.arraycopy(utf8States, 0, newArray, 0, utf8StateCount);
     utf8States = newArray;
   }
   utf8States[utf8StateCount] = s;
   s.number = utf8StateCount;
   utf8StateCount++;
   return s;
 }
  /**
   * Converts an incoming utf32 automaton to an equivalent utf8 one. The incoming automaton need not
   * be deterministic. Note that the returned automaton will not in general be deterministic, so you
   * must determinize it if that's needed.
   */
  public Automaton convert(Automaton utf32) {
    if (utf32.isSingleton()) {
      utf32 = utf32.cloneExpanded();
    }

    State[] map = new State[utf32.getNumberedStates().length];
    List<State> pending = new ArrayList<State>();
    State utf32State = utf32.getInitialState();
    pending.add(utf32State);
    Automaton utf8 = new Automaton();
    utf8.setDeterministic(false);

    State utf8State = utf8.getInitialState();

    utf8States = new State[5];
    utf8StateCount = 0;
    utf8State.number = utf8StateCount;
    utf8States[utf8StateCount] = utf8State;
    utf8StateCount++;

    utf8State.setAccept(utf32State.isAccept());

    map[utf32State.number] = utf8State;

    while (pending.size() != 0) {
      utf32State = pending.remove(pending.size() - 1);
      utf8State = map[utf32State.number];
      for (int i = 0; i < utf32State.numTransitions; i++) {
        final Transition t = utf32State.transitionsArray[i];
        final State destUTF32 = t.to;
        State destUTF8 = map[destUTF32.number];
        if (destUTF8 == null) {
          destUTF8 = newUTF8State();
          destUTF8.accept = destUTF32.accept;
          map[destUTF32.number] = destUTF8;
          pending.add(destUTF32);
        }
        convertOneEdge(utf8State, destUTF8, t.min, t.max);
      }
    }

    utf8.setNumberedStates(utf8States, utf8StateCount);

    return utf8;
  }
 /** Minimizes the given automaton using Hopcroft's algorithm. */
 public static void minimizeHopcroft(Automaton a) {
   a.determinize();
   Set<Transition> tr = a.initial.getTransitions();
   if (tr.size() == 1) {
     Transition t = tr.iterator().next();
     if (t.to == a.initial && t.min == Transition.MIN_VALUE && t.max == Transition.MAX_VALUE)
       return;
   }
   a.totalize();
   // make arrays for numbered states and effective alphabet
   Set<State> ss = a.getStates();
   State[] states = new State[ss.size()];
   int number = 0;
   for (State q : ss) {
     states[number] = q;
     q.number = number++;
   }
   int[] sigma = a.getStartPoints();
   // initialize data structures
   ArrayList<ArrayList<LinkedList<State>>> reverse = new ArrayList<ArrayList<LinkedList<State>>>();
   for (int q = 0; q < states.length; q++) {
     ArrayList<LinkedList<State>> v = new ArrayList<LinkedList<State>>();
     initialize(v, sigma.length);
     reverse.add(v);
   }
   boolean[][] reverse_nonempty = new boolean[states.length][sigma.length];
   ArrayList<LinkedList<State>> partition = new ArrayList<LinkedList<State>>();
   initialize(partition, states.length);
   int[] block = new int[states.length];
   StateList[][] active = new StateList[states.length][sigma.length];
   StateListNode[][] active2 = new StateListNode[states.length][sigma.length];
   LinkedList<IntPair> pending = new LinkedList<IntPair>();
   boolean[][] pending2 = new boolean[sigma.length][states.length];
   ArrayList<State> split = new ArrayList<State>();
   boolean[] split2 = new boolean[states.length];
   ArrayList<Integer> refine = new ArrayList<Integer>();
   boolean[] refine2 = new boolean[states.length];
   ArrayList<ArrayList<State>> splitblock = new ArrayList<ArrayList<State>>();
   initialize(splitblock, states.length);
   for (int q = 0; q < states.length; q++) {
     splitblock.set(q, new ArrayList<State>());
     partition.set(q, new LinkedList<State>());
     for (int x = 0; x < sigma.length; x++) {
       reverse.get(q).set(x, new LinkedList<State>());
       active[q][x] = new StateList();
     }
   }
   // find initial partition and reverse edges
   for (int q = 0; q < states.length; q++) {
     State qq = states[q];
     int j;
     if (qq.accept) j = 0;
     else j = 1;
     partition.get(j).add(qq);
     block[qq.number] = j;
     for (int x = 0; x < sigma.length; x++) {
       int y = sigma[x];
       State p = qq.step(y);
       reverse.get(p.number).get(x).add(qq);
       reverse_nonempty[p.number][x] = true;
     }
   }
   // initialize active sets
   for (int j = 0; j <= 1; j++)
     for (int x = 0; x < sigma.length; x++)
       for (State qq : partition.get(j))
         if (reverse_nonempty[qq.number][x]) active2[qq.number][x] = active[j][x].add(qq);
   // initialize pending
   for (int x = 0; x < sigma.length; x++) {
     int a0 = active[0][x].size;
     int a1 = active[1][x].size;
     int j;
     if (a0 <= a1) j = 0;
     else j = 1;
     pending.add(new IntPair(j, x));
     pending2[x][j] = true;
   }
   // process pending until fixed point
   int k = 2;
   while (!pending.isEmpty()) {
     IntPair ip = pending.removeFirst();
     int p = ip.n1;
     int x = ip.n2;
     pending2[x][p] = false;
     // find states that need to be split off their blocks
     for (StateListNode m = active[p][x].first; m != null; m = m.next)
       for (State s : reverse.get(m.q.number).get(x))
         if (!split2[s.number]) {
           split2[s.number] = true;
           split.add(s);
           int j = block[s.number];
           splitblock.get(j).add(s);
           if (!refine2[j]) {
             refine2[j] = true;
             refine.add(j);
           }
         }
     // refine blocks
     for (int j : refine) {
       if (splitblock.get(j).size() < partition.get(j).size()) {
         LinkedList<State> b1 = partition.get(j);
         LinkedList<State> b2 = partition.get(k);
         for (State s : splitblock.get(j)) {
           b1.remove(s);
           b2.add(s);
           block[s.number] = k;
           for (int c = 0; c < sigma.length; c++) {
             StateListNode sn = active2[s.number][c];
             if (sn != null && sn.sl == active[j][c]) {
               sn.remove();
               active2[s.number][c] = active[k][c].add(s);
             }
           }
         }
         // update pending
         for (int c = 0; c < sigma.length; c++) {
           int aj = active[j][c].size;
           int ak = active[k][c].size;
           if (!pending2[c][j] && 0 < aj && aj <= ak) {
             pending2[c][j] = true;
             pending.add(new IntPair(j, c));
           } else {
             pending2[c][k] = true;
             pending.add(new IntPair(k, c));
           }
         }
         k++;
       }
       for (State s : splitblock.get(j)) split2[s.number] = false;
       refine2[j] = false;
       splitblock.get(j).clear();
     }
     split.clear();
     refine.clear();
   }
   // make a new state for each equivalence class, set initial state
   State[] newstates = new State[k];
   for (int n = 0; n < newstates.length; n++) {
     State s = new State();
     newstates[n] = s;
     for (State q : partition.get(n)) {
       if (q == a.initial) a.initial = s;
       s.accept = q.accept;
       s.number = q.number; // select representative
       q.number = n;
     }
   }
   // build transitions and set acceptance
   for (int n = 0; n < newstates.length; n++) {
     State s = newstates[n];
     s.accept = states[s.number].accept;
     for (Transition t : states[s.number].transitions)
       s.transitions.add(new Transition(t.min, t.max, newstates[t.to.number]));
   }
   a.removeDeadTransitions();
 }
  /**
   * Determinizes the given automaton.
   *
   * <p>Worst case complexity: exponential in number of states.
   */
  static void determinize(Automaton a) {
    if (a.deterministic || a.isSingleton()) {
      return;
    }

    final State[] allStates = a.getNumberedStates();

    // subset construction
    final boolean initAccept = a.initial.accept;
    final int initNumber = a.initial.number;
    a.initial = new State();
    SortedIntSet.FrozenIntSet initialset = new SortedIntSet.FrozenIntSet(initNumber, a.initial);

    LinkedList<SortedIntSet.FrozenIntSet> worklist = new LinkedList<SortedIntSet.FrozenIntSet>();
    Map<SortedIntSet.FrozenIntSet, State> newstate =
        new HashMap<SortedIntSet.FrozenIntSet, State>();

    worklist.add(initialset);

    a.initial.accept = initAccept;
    newstate.put(initialset, a.initial);

    int newStateUpto = 0;
    State[] newStatesArray = new State[5];
    newStatesArray[newStateUpto] = a.initial;
    a.initial.number = newStateUpto;
    newStateUpto++;

    // like Set<Integer,PointTransitions>
    final PointTransitionSet points = new PointTransitionSet();

    // like SortedMap<Integer,Integer>
    final SortedIntSet statesSet = new SortedIntSet(5);

    while (worklist.size() > 0) {
      SortedIntSet.FrozenIntSet s = worklist.removeFirst();

      // Collate all outgoing transitions by min/1+max:
      for (int i = 0; i < s.values.length; i++) {
        final State s0 = allStates[s.values[i]];
        for (int j = 0; j < s0.numTransitions; j++) {
          points.add(s0.transitionsArray[j]);
        }
      }

      if (points.count == 0) {
        // No outgoing transitions -- skip it
        continue;
      }

      points.sort();

      int lastPoint = -1;
      int accCount = 0;

      final State r = s.state;
      for (int i = 0; i < points.count; i++) {

        final int point = points.points[i].point;

        if (statesSet.upto > 0) {
          assert lastPoint != -1;

          statesSet.computeHash();

          State q = newstate.get(statesSet);
          if (q == null) {
            q = new State();
            final SortedIntSet.FrozenIntSet p = statesSet.freeze(q);
            worklist.add(p);
            if (newStateUpto == newStatesArray.length) {
              final State[] newArray =
                  new State
                      [ArrayUtil.oversize(1 + newStateUpto, RamUsageEstimator.NUM_BYTES_OBJ_REF)];
              System.arraycopy(newStatesArray, 0, newArray, 0, newStateUpto);
              newStatesArray = newArray;
            }
            newStatesArray[newStateUpto] = q;
            q.number = newStateUpto;
            newStateUpto++;
            q.accept = accCount > 0;
            newstate.put(p, q);
          } else {
            assert (accCount > 0 ? true : false) == q.accept
                : "accCount="
                    + accCount
                    + " vs existing accept="
                    + q.accept
                    + " states="
                    + statesSet;
          }

          r.addTransition(new Transition(lastPoint, point - 1, q));
        }

        // process transitions that end on this point
        // (closes an overlapping interval)
        Transition[] transitions = points.points[i].ends.transitions;
        int limit = points.points[i].ends.count;
        for (int j = 0; j < limit; j++) {
          final Transition t = transitions[j];
          final Integer num = t.to.number;
          statesSet.decr(num);
          accCount -= t.to.accept ? 1 : 0;
        }
        points.points[i].ends.count = 0;

        // process transitions that start on this point
        // (opens a new interval)
        transitions = points.points[i].starts.transitions;
        limit = points.points[i].starts.count;
        for (int j = 0; j < limit; j++) {
          final Transition t = transitions[j];
          final Integer num = t.to.number;
          statesSet.incr(num);
          accCount += t.to.accept ? 1 : 0;
        }
        lastPoint = point;
        points.points[i].starts.count = 0;
      }
      points.reset();
      assert statesSet.upto == 0 : "upto=" + statesSet.upto;
    }
    a.deterministic = true;
    a.setNumberedStates(newStatesArray, newStateUpto);
  }