/** * Constructor. Creates a new instance of Spea2Fitness for a given <code>SolutionSet</code>. * * @param solutionSet The <code>SolutionSet</code> */ public Spea2Fitness(SolutionSet solutionSet) { distance = distance_.distanceMatrix(solutionSet); solutionSet_ = solutionSet; for (int i = 0; i < solutionSet_.size(); i++) { solutionSet_.get(i).setLocation(i); } // for } // Spea2Fitness
/** * Performs the operation * * @param object Object representing a SolutionSet. * @return the best solution found */ public Object execute(Object object) { SolutionSet solutionSet = (SolutionSet) object; if (solutionSet.size() == 0) { return null; } int worstSolution; worstSolution = 0; for (int i = 1; i < solutionSet.size(); i++) { if (comparator_.compare(solutionSet.get(i), solutionSet.get(worstSolution)) > 0) worstSolution = i; } // for return worstSolution; } // Execute
/** * Performs the operation * * @param object Object representing a SolutionSet. * @return the best solution found */ public Object execute(Object object, CITO_CAITO problem) { SolutionSet solutionSet = (SolutionSet) object; if (solutionSet.size() == 0) { return null; } int bestSolution; bestSolution = 0; for (int i = 1; i < solutionSet.size(); i++) { if (comparator_.compare(solutionSet.get(i), solutionSet.get(bestSolution)) < 0) bestSolution = i; } // for return bestSolution; } // Execute
/** * Assigns crowding distances to all solutions in a <code>SolutionSet</code>. * * @param solutionSet The <code>SolutionSet</code>. * @param nObjs Number of objectives. */ public void crowdingDistanceAssignment(SolutionSet solutionSet, int nObjs) { int size = solutionSet.size(); if (size == 0) return; if (size == 1) { solutionSet.get(0).setCrowdingDistance(Double.POSITIVE_INFINITY); return; } // if if (size == 2) { solutionSet.get(0).setCrowdingDistance(Double.POSITIVE_INFINITY); solutionSet.get(1).setCrowdingDistance(Double.POSITIVE_INFINITY); return; } // if // Use a new SolutionSet to evite alter original solutionSet SolutionSet front = new SolutionSet(size); for (int i = 0; i < size; i++) { front.add(solutionSet.get(i)); } for (int i = 0; i < size; i++) front.get(i).setCrowdingDistance(0.0); double objetiveMaxn; double objetiveMinn; double distance; for (int i = 0; i < nObjs; i++) { // Sort the population by Obj n front.sort(new ObjectiveComparator(i)); objetiveMinn = front.get(0).getObjective(i); objetiveMaxn = front.get(front.size() - 1).getObjective(i); // Set de crowding distance front.get(0).setCrowdingDistance(Double.POSITIVE_INFINITY); front.get(size - 1).setCrowdingDistance(Double.POSITIVE_INFINITY); for (int j = 1; j < size - 1; j++) { distance = front.get(j + 1).getObjective(i) - front.get(j - 1).getObjective(i); distance = distance / (objetiveMaxn - objetiveMinn); distance += front.get(j).getCrowdingDistance(); front.get(j).setCrowdingDistance(distance); } // for } // for } // crowdingDistanceAssing
protected void addRankedSolutionsToPopulation(Ranking ranking, int rank) throws JMetalException { SolutionSet front; front = ranking.getSubfront(rank); for (int i = 0; i < front.size(); i++) { population.add(front.get(i)); } }
/** * Returns a matrix with distances between solutions in a <code>SolutionSet</code>. * * @param solutionSet The <code>SolutionSet</code>. * @return a matrix with distances. */ public double[][] distanceMatrix(SolutionSet solutionSet) { Solution solutionI, solutionJ; // The matrix of distances double[][] distance = new double[solutionSet.size()][solutionSet.size()]; // -> Calculate the distances for (int i = 0; i < solutionSet.size(); i++) { distance[i][i] = 0.0; solutionI = solutionSet.get(i); for (int j = i + 1; j < solutionSet.size(); j++) { solutionJ = solutionSet.get(j); distance[i][j] = this.distanceBetweenObjectives(solutionI, solutionJ); distance[j][i] = distance[i][j]; } // for } // for // ->Return the matrix of distances return distance; } // distanceMatrix
protected void addLastRankedSolutions(Ranking ranking, int rank) throws JMetalException { SolutionSet currentRankedFront = ranking.getSubfront(rank); currentRankedFront.sort(new CrowdingComparator()); int i = 0; while (population.size() < populationSize) { population.add(currentRankedFront.get(i)); i++; } }
/** * Apply a mutation operator to some particles in the swarm * * @throws jmetal.util.JMException */ private void mopsoMutation(int actualIteration, int totalIterations) throws JMException { for (int i = 0; i < particles_.size(); i++) { if ((i % 6) == 0) polynomialMutation_.execute(particles_.get(i)); // if (i % 3 == 0) { //particles_ mutated with a non-uniform mutation %3 // nonUniformMutation_.execute(particles_.get(i)); // } else if (i % 3 == 1) { //particles_ mutated with a uniform mutation operator // uniformMutation_.execute(particles_.get(i)); // } else //particles_ without mutation // ; } } // mopsoMutation
/** * Returns the minimum distance from a <code>Solution</code> to a <code> * SolutionSet according to the variable values</code>. * * @param solution The <code>Solution</code>. * @param solutionSet The <code>SolutionSet</code>. * @return The minimum distance between solution and the set. * @throws JMException */ public double distanceToSolutionSetInSolutionSpace(Solution solution, SolutionSet solutionSet) throws JMException { // At start point the distance is the max double distance = Double.MAX_VALUE; // found the min distance respect to population for (int i = 0; i < solutionSet.size(); i++) { double aux = this.distanceBetweenSolutions(solution, solutionSet.get(i)); if (aux < distance) distance = aux; } // for // ->Return the best distance return distance; } // distanceToSolutionSetInSolutionSpace
/** Assigns fitness for all the solutions. */ public void fitnessAssign() { double[] strength = new double[solutionSet_.size()]; double[] rawFitness = new double[solutionSet_.size()]; double kDistance; // Calculate the strength value // strength(i) = |{j | j <- SolutionSet and i dominate j}| for (int i = 0; i < solutionSet_.size(); i++) { for (int j = 0; j < solutionSet_.size(); j++) { if (dominance_.compare(solutionSet_.get(i), solutionSet_.get(j)) == -1) { strength[i] += 1.0; } // if } // for } // for // Calculate the raw fitness // rawFitness(i) = |{sum strenght(j) | j <- SolutionSet and j dominate i}| for (int i = 0; i < solutionSet_.size(); i++) { for (int j = 0; j < solutionSet_.size(); j++) { if (dominance_.compare(solutionSet_.get(i), solutionSet_.get(j)) == 1) { rawFitness[i] += strength[j]; } // if } // for } // for // Add the distance to the k-th individual. In the reference paper of SPEA2, // k = sqrt(population.size()), but a value of k = 1 recommended. See // http://www.tik.ee.ethz.ch/pisa/selectors/spea2/spea2_documentation.txt int k = 1; for (int i = 0; i < distance.length; i++) { Arrays.sort(distance[i]); kDistance = 1.0 / (distance[i][k] + 2.0); // Calcule de D(i) distance // population.get(i).setFitness(rawFitness[i]); solutionSet_.get(i).setFitness(rawFitness[i] + kDistance); } // for } // fitnessAsign
protected SolutionSet evaluatePopulation(SolutionSet population) throws JMetalException { evaluations += population.size(); return evaluator.evaluate(population, problem); }
/** * Runs of the Spea2 algorithm. * * @return a <code>SolutionSet</code> that is a set of non dominated solutions as a result of the * algorithm execution * @throws JMException */ public SolutionSet execute() throws JMException, ClassNotFoundException { int populationSize, archiveSize, maxEvaluations, evaluations; Operator crossoverOperator, mutationOperator, selectionOperator; SolutionSet solutionSet, archive, offSpringSolutionSet; // Read the params populationSize = ((Integer) getInputParameter("populationSize")).intValue(); archiveSize = ((Integer) getInputParameter("archiveSize")).intValue(); maxEvaluations = ((Integer) getInputParameter("maxEvaluations")).intValue(); // Read the operators crossoverOperator = operators_.get("crossover"); mutationOperator = operators_.get("mutation"); selectionOperator = operators_.get("selection"); // Initialize the variables solutionSet = new SolutionSet(populationSize); archive = new SolutionSet(archiveSize); evaluations = 0; // -> Create the initial solutionSet Solution newSolution; for (int i = 0; i < populationSize; i++) { newSolution = new Solution(problem_); problem_.evaluate(newSolution); problem_.evaluateConstraints(newSolution); evaluations++; solutionSet.add(newSolution); } while (evaluations < maxEvaluations) { SolutionSet union = ((SolutionSet) solutionSet).union(archive); Spea2Fitness spea = new Spea2Fitness(union); spea.fitnessAssign(); archive = spea.environmentalSelection(archiveSize); // Create a new offspringPopulation offSpringSolutionSet = new SolutionSet(populationSize); Solution[] parents = new Solution[2]; while (offSpringSolutionSet.size() < populationSize) { int j = 0; do { j++; parents[0] = (Solution) selectionOperator.execute(archive); } while (j < SPEA2.TOURNAMENTS_ROUNDS); // do-while int k = 0; do { k++; parents[1] = (Solution) selectionOperator.execute(archive); } while (k < SPEA2.TOURNAMENTS_ROUNDS); // do-while // make the crossover Solution[] offSpring = (Solution[]) crossoverOperator.execute(parents); mutationOperator.execute(offSpring[0]); problem_.evaluate(offSpring[0]); problem_.evaluateConstraints(offSpring[0]); offSpringSolutionSet.add(offSpring[0]); evaluations++; } // while // End Create a offSpring solutionSet solutionSet = offSpringSolutionSet; } // while Ranking ranking = new Ranking(archive); return ranking.getSubfront(0); } // execute
/** @param args the command line arguments -- modelname, alg_name, evaluation_times, [runid] */ public static void main(String[] args) throws Exception { try { String name = args[0]; URL location = Main.class.getProtectionDomain().getCodeSource().getLocation(); String loc = location.toString(); String project_path = loc.substring(5, loc.lastIndexOf("SPL/")) + "SPL/"; // with '/' at the end String fm = project_path + "dimacs_data/" + name + ".dimacs"; String augment = fm + ".augment"; String dead = fm + ".dead"; String mandatory = fm + ".mandatory"; String seed = fm + ".richseed"; String opfile = fm + ".sipop"; Problem p = new ProductLineProblem(fm, augment, mandatory, dead, seed); // Problem p = new ProductLineProblemNovelPrep(fm, augment, mandatory, dead, seed, // opfile); // GroupedProblem.grouping((ProductLineProblem) p, 100); System.exit(0); Algorithm a; int evaluation_times = Integer.parseInt(args[2]); String alg_name = args[1]; String runid = ""; if (args.length >= 4) { runid = args[3]; } switch (alg_name) { case "IBEA": a = new SPL_SettingsIBEA(p).configureICSE2013(evaluation_times); break; case "SIPIBEA": a = new SPL_SettingsIBEA(p).configureSIPIBEA(evaluation_times); break; case "SPEA2": a = new SPL_SettingsEMOs(p).configureSPEA2(evaluation_times); break; case "NSGA2": a = new SPL_SettingsEMOs(p).configureNSGA2(evaluation_times); break; case "IBEASEED": a = new SPL_SettingsIBEA(p).configureIBEASEED(evaluation_times); break; case "SATIBEA": // a = new SPL_SettingsIBEA(p).configureICSE15(1000, fm, ((ProductLineProblem) // p).getNumFeatures(), // ((ProductLineProblem) p).getConstraints()); a = new SPL_SettingsIBEA(p) .configureSATIBEA( evaluation_times, fm, ((ProductLineProblem) p).getNumFeatures(), ((ProductLineProblem) p).getConstraints()); break; default: a = new SPL_SettingsIBEA(p).configureICSE2013(evaluation_times); } long start = System.currentTimeMillis(); SolutionSet pop = a.execute(); float total_time = (System.currentTimeMillis() - start) / 1000.0f; String file_tag = name + "_" + alg_name + '_' + evaluation_times / 1000 + "k_" + runid + ".txt"; String file_path = project_path + "j_res/" + file_tag; File file = new File(file_path); if (!file.exists()) { file.createNewFile(); } FileWriter fw = new FileWriter(file.getAbsoluteFile()); BufferedWriter bw = new BufferedWriter(fw); for (int i = 0; i < pop.size(); i++) { Variable v = pop.get(i).getDecisionVariables()[0]; bw.write((Binary) v + "\n"); System.out.println("Conf" + (i + 1) + ": " + (Binary) v + " "); } bw.write("~~~\n"); for (int i = 0; i < pop.size(); i++) { Variable v = pop.get(i).getDecisionVariables()[0]; for (int j = 0; j < pop.get(i).getNumberOfObjectives(); j++) { bw.write(pop.get(i).getObjective(j) + " "); System.out.print(pop.get(i).getObjective(j) + " "); } bw.write("\n"); System.out.println(""); } System.out.println(total_time); bw.write("~~~\n" + total_time + "\n"); bw.close(); fw.close(); } catch (Exception e) { e.printStackTrace(); } }
/** * Runs of the SMPSO algorithm. * * @return a <code>SolutionSet</code> that is a set of non dominated solutions as a result of the * algorithm execution * @throws jmetal.util.JMException */ public SolutionSet execute() throws JMException, ClassNotFoundException { initParams(); success_ = false; // ->Step 1 (and 3) Create the initial population and evaluate for (int i = 0; i < swarmSize_; i++) { Solution particle = new Solution(problem_); problem_.evaluate(particle); problem_.evaluateConstraints(particle); particles_.add(particle); } // -> Step2. Initialize the speed_ of each particle to 0 for (int i = 0; i < swarmSize_; i++) { for (int j = 0; j < problem_.getNumberOfVariables(); j++) { speed_[i][j] = 0.0; } } // Step4 and 5 for (int i = 0; i < particles_.size(); i++) { Solution particle = new Solution(particles_.get(i)); leaders_.add(particle); } // -> Step 6. Initialize the memory of each particle for (int i = 0; i < particles_.size(); i++) { Solution particle = new Solution(particles_.get(i)); best_[i] = particle; } // Crowding the leaders_ distance_.crowdingDistanceAssignment(leaders_, problem_.getNumberOfObjectives()); // -> Step 7. Iterations .. while (iteration_ < maxIterations_) { try { // Compute the speed_ computeSpeed(iteration_, maxIterations_); } catch (IOException ex) { Logger.getLogger(SMPSO.class.getName()).log(Level.SEVERE, null, ex); } // Compute the new positions for the particles_ computeNewPositions(); // Mutate the particles_ mopsoMutation(iteration_, maxIterations_); // Evaluate the new particles_ in new positions for (int i = 0; i < particles_.size(); i++) { Solution particle = particles_.get(i); problem_.evaluate(particle); problem_.evaluateConstraints(particle); } // Actualize the archive for (int i = 0; i < particles_.size(); i++) { Solution particle = new Solution(particles_.get(i)); leaders_.add(particle); } // Actualize the memory of this particle for (int i = 0; i < particles_.size(); i++) { int flag = dominance_.compare(particles_.get(i), best_[i]); if (flag != 1) { // the new particle is best_ than the older remeber Solution particle = new Solution(particles_.get(i)); best_[i] = particle; } } // Assign crowding distance to the leaders_ distance_.crowdingDistanceAssignment(leaders_, problem_.getNumberOfObjectives()); iteration_++; /* if ((iteration_ % 1) == 0) { leaders_.printObjectivesOfValidSolutionsToFile("FUNV"+iteration_) ; leaders_.printObjectivesToFile("FUN"+iteration_) ; leaders_.printVariablesToFile("VAR"+iteration_) ; } */ } // leaders_.printObjectivesOfValidSolutionsToFile("FUNV.SMPSO") ; leaders_.printFeasibleFUN("FUN_SMPSO"); return this.leaders_; } // execute
/** * Runs of the SMPSO algorithm. * @return a <code>SolutionSet</code> that is a set of non dominated solutions * as a result of the algorithm execution * @throws JMException */ public SolutionSet execute() throws JMException, ClassNotFoundException { initParams(); success_ = false; globalBest_ = null ; //->Step 1 (and 3) Create the initial population and evaluate for (int i = 0; i < particlesSize_; i++) { Solution particle = new Solution(problem_); problem_.evaluate(particle); evaluations_ ++ ; particles_.add(particle); if ((globalBest_ == null) || (particle.getObjective(0) < globalBest_.getObjective(0))) globalBest_ = new Solution(particle) ; } //-> Step2. Initialize the speed_ of each particle to 0 for (int i = 0; i < particlesSize_; i++) { for (int j = 0; j < problem_.getNumberOfVariables(); j++) { speed_[i][j] = 0.0; } } //-> Step 6. Initialize the memory of each particle for (int i = 0; i < particles_.size(); i++) { Solution particle = new Solution(particles_.get(i)); localBest_[i] = particle; } //-> Step 7. Iterations .. while (iteration_ < maxIterations_) { int bestIndividual = (Integer)findBestSolution_.execute(particles_) ; try { //Compute the speed_ computeSpeed(iteration_, maxIterations_); } catch (IOException ex) { Logger.getLogger(PSO.class.getName()).log(Level.SEVERE, null, ex); } //Compute the new positions for the particles_ computeNewPositions(); //Mutate the particles_ //mopsoMutation(iteration_, maxIterations_); //Evaluate the new particles_ in new positions evaluations_ += particles_.size(); finish { // async { for (int i = 0; i < particles_.size(); i++) { evaluate_parallel_internal(i); } } } //Actualize the memory of this particle for (int i = 0; i < particles_.size(); i++) { //int flag = comparator_.compare(particles_.get(i), localBest_[i]); //if (flag < 0) { // the new particle is best_ than the older remember if ((particles_.get(i).getObjective(0) < localBest_[i].getObjective(0))) { Solution particle = new Solution(particles_.get(i)); localBest_[i] = particle; } // if if ((particles_.get(i).getObjective(0) < globalBest_.getObjective(0))) { Solution particle = new Solution(particles_.get(i)); globalBest_ = particle; } // if } iteration_++; } // Return a population with the best individual SolutionSet resultPopulation = new SolutionSet(1) ; resultPopulation.add(particles_.get((Integer)findBestSolution_.execute(particles_))) ; return resultPopulation ; } // execute
protected boolean populationIsNotFull() { return population.size() < populationSize; }
/** * Gets 'size' elements from a population of more than 'size' elements using for this de * enviromentalSelection truncation * * @param size The number of elements to get. */ public SolutionSet environmentalSelection(int size) { if (solutionSet_.size() < size) { size = solutionSet_.size(); } // Create a new auxiliar population for no alter the original population SolutionSet aux = new SolutionSet(solutionSet_.size()); int i = 0; while (i < solutionSet_.size()) { if (solutionSet_.get(i).getFitness() < 1.0) { aux.add(solutionSet_.get(i)); solutionSet_.remove(i); } else { i++; } // if } // while if (aux.size() < size) { Comparator comparator = new FitnessComparator(); solutionSet_.sort(comparator); int remain = size - aux.size(); for (i = 0; i < remain; i++) { aux.add(solutionSet_.get(i)); } return aux; } else if (aux.size() == size) { return aux; } double[][] distance = distance_.distanceMatrix(aux); List<List<DistanceNode>> distanceList = new LinkedList<List<DistanceNode>>(); for (int pos = 0; pos < aux.size(); pos++) { aux.get(pos).setLocation(pos); List<DistanceNode> distanceNodeList = new ArrayList<DistanceNode>(); for (int ref = 0; ref < aux.size(); ref++) { if (pos != ref) { distanceNodeList.add(new DistanceNode(distance[pos][ref], ref)); } // if } // for distanceList.add(distanceNodeList); } // for for (int q = 0; q < distanceList.size(); q++) { Collections.sort(distanceList.get(q), distanceNodeComparator); } // for while (aux.size() > size) { double minDistance = Double.MAX_VALUE; int toRemove = 0; i = 0; Iterator<List<DistanceNode>> iterator = distanceList.iterator(); while (iterator.hasNext()) { List<DistanceNode> dn = iterator.next(); if (dn.get(0).getDistance() < minDistance) { toRemove = i; minDistance = dn.get(0).getDistance(); // i y toRemove have the same distance to the first solution } else if (dn.get(0).getDistance() == minDistance) { int k = 0; while ((dn.get(k).getDistance() == distanceList.get(toRemove).get(k).getDistance()) && k < (distanceList.get(i).size() - 1)) { k++; } if (dn.get(k).getDistance() < distanceList.get(toRemove).get(k).getDistance()) { toRemove = i; } // if } // if i++; } // while int tmp = aux.get(toRemove).getLocation(); aux.remove(toRemove); distanceList.remove(toRemove); Iterator<List<DistanceNode>> externIterator = distanceList.iterator(); while (externIterator.hasNext()) { Iterator<DistanceNode> interIterator = externIterator.next().iterator(); while (interIterator.hasNext()) { if (interIterator.next().getReference() == tmp) { interIterator.remove(); continue; } // if } // while } // while } // while return aux; } // environmentalSelection
/** * Runs of the PESA2 algorithm. * * @return a <code>SolutionSet</code> that is a set of non dominated solutions as a result of the * algorithm execution * @throws JMException */ public SolutionSet execute() throws JMException, ClassNotFoundException { int archiveSize, bisections, maxEvaluations, evaluations, populationSize; AdaptiveGridArchive archive; SolutionSet solutionSet; Operator crossover, mutation, selection; // Read parameters populationSize = ((Integer) (inputParameters_.get("populationSize"))).intValue(); archiveSize = ((Integer) (inputParameters_.get("archiveSize"))).intValue(); bisections = ((Integer) (inputParameters_.get("bisections"))).intValue(); maxEvaluations = ((Integer) (inputParameters_.get("maxEvaluations"))).intValue(); // Get the operators crossover = operators_.get("crossover"); mutation = operators_.get("mutation"); // Initialize the variables evaluations = 0; archive = new AdaptiveGridArchive(archiveSize, bisections, problem_.getNumberOfObjectives()); solutionSet = new SolutionSet(populationSize); HashMap parameters = null; selection = new PESA2Selection(parameters); // -> Create the initial individual and evaluate it and his constraints for (int i = 0; i < populationSize; i++) { Solution solution = new Solution(problem_); problem_.evaluate(solution); problem_.evaluateConstraints(solution); solutionSet.add(solution); } // Incorporate non-dominated solution to the archive for (int i = 0; i < solutionSet.size(); i++) { archive.add(solutionSet.get(i)); // Only non dominated are accepted by // the archive } // Clear the init solutionSet solutionSet.clear(); // Iterations.... Solution[] parents = new Solution[2]; do { // -> Create the offSpring solutionSet while (solutionSet.size() < populationSize) { parents[0] = (Solution) selection.execute(archive); parents[1] = (Solution) selection.execute(archive); Solution[] offSpring = (Solution[]) crossover.execute(parents); mutation.execute(offSpring[0]); problem_.evaluate(offSpring[0]); problem_.evaluateConstraints(offSpring[0]); evaluations++; solutionSet.add(offSpring[0]); } for (int i = 0; i < solutionSet.size(); i++) archive.add(solutionSet.get(i)); // Clear the solutionSet solutionSet.clear(); } while (evaluations < maxEvaluations); // Return the solutionSet of non-dominated individual return archive; } // execute
protected boolean subfrontFillsIntoThePopulation(Ranking ranking, int rank) { return ranking.getSubfront(rank).size() < (populationSize - population.size()); }
/** * @author Juanjo This method selects N solutions from a set M, where N <= M using the same method * proposed by Qingfu Zhang, W. Liu, and Hui Li in the paper describing MOEA/D-DRA (CEC 09 * COMPTETITION) An example is giving in that paper for two objectives. If N = 100, then the * best solutions attenting to the weights (0,1), (1/99,98/99), ...,(98/99,1/99), (1,0) are * selected. * <p>Using this method result in 101 solutions instead of 100. We will just compute 100 even * distributed weights and used them. The result is the same * <p>In case of more than two objectives the procedure is: 1- Select a solution at random 2- * Select the solution from the population which have maximum distance to it (whithout * considering the already included) * @param n: The number of solutions to return * @return A solution set containing those elements */ SolutionSet finalSelection(int n) throws JMException { SolutionSet res = new SolutionSet(n); if (problem_.getNumberOfObjectives() == 2) { // subcase 1 double[][] intern_lambda = new double[n][2]; for (int i = 0; i < n; i++) { double a = 1.0 * i / (n - 1); intern_lambda[i][0] = a; intern_lambda[i][1] = 1 - a; } // for // we have now the weights, now select the best solution for each of them for (int i = 0; i < n; i++) { Solution current_best = population.get(0); int index = 0; double value = fitnessFunction(current_best, intern_lambda[i]); for (int j = 1; j < n; j++) { double aux = fitnessFunction( population.get(j), intern_lambda[i]); // we are looking the best for the weight i if (aux < value) { // solution in position j is better! value = aux; current_best = population.get(j); } } res.add(new Solution(current_best)); } } else { // general case (more than two objectives) Distance distance_utility = new Distance(); int random_index = PseudoRandom.randInt(0, population.size() - 1); // create a list containing all the solutions but the selected one (only references to them) List<Solution> candidate = new LinkedList<Solution>(); candidate.add(population.get(random_index)); for (int i = 0; i < population.size(); i++) { if (i != random_index) { candidate.add(population.get(i)); } } // for while (res.size() < n) { int index = 0; Solution selected = candidate.get(0); // it should be a next! (n <= population size!) double distance_value = distance_utility.distanceToSolutionSetInObjectiveSpace(selected, res); int i = 1; while (i < candidate.size()) { Solution next_candidate = candidate.get(i); double aux = distance_value = distance_utility.distanceToSolutionSetInObjectiveSpace(next_candidate, res); if (aux > distance_value) { distance_value = aux; index = i; } i++; } // add the selected to res and remove from candidate list res.add(new Solution(candidate.remove(index))); } // } return res; }