@Override public void process(Pair<TransactionTrace, Integer> p) { assert (p != null); final TransactionTrace txn_trace = p.getFirst(); final int i = p.getSecond(); // Interval final int txn_weight = (use_txn_weights ? txn_trace.getWeight() : 1); final String proc_key = CatalogKey.createKey(CatalogUtil.DEFAULT_DATABASE_NAME, txn_trace.getCatalogItemName()); // Terrible Hack: Assume that we are using the SingleSitedCostModel // and that // it will return fixed values based on whether the txn is // single-partitioned or not SingleSitedCostModel singlesited_cost_model = (SingleSitedCostModel) cost_models[i]; total_interval_txns[i] += txn_weight; total_interval_queries[i] += (txn_trace.getQueryCount() * txn_weight); histogram_procs.put(proc_key, txn_weight); try { singlesited_cost_model.estimateTransactionCost(catalogContext, workload, filter, txn_trace); TransactionCacheEntry txn_entry = singlesited_cost_model.getTransactionCacheEntry(txn_trace); assert (txn_entry != null) : "No txn entry for " + txn_trace; Collection<Integer> partitions = txn_entry.getTouchedPartitions(); // If the txn runs on only one partition, then the cost is // nothing if (txn_entry.isSinglePartitioned()) { singlepartition_ctrs[i] += txn_weight; if (!partitions.isEmpty()) { assert (txn_entry.getAllTouchedPartitionsHistogram().getValueCount() == 1) : txn_entry + " says it was single-partitioned but the partition count says otherwise:\n" + txn_entry.debug(); singlepartition_with_partitions_ctrs[i] += txn_weight; } histogram_sp_procs.put(proc_key, txn_weight); // If the txn runs on multiple partitions, then the cost // is... // XXX 2010-06-28: The number of partitions that the txn // touches divided by the total number of partitions // XXX 2010-07-02: The histogram for the total number of // partitions touched by all of the queries // in the transaction. This ensures that txns with just one // multi-partition query // isn't weighted the same as a txn with many // multi-partition queries } else { assert (!partitions.isEmpty()) : "No touched partitions for " + txn_trace; if (partitions.size() == 1 && txn_entry.getExecutionPartition() != HStoreConstants.NULL_PARTITION_ID) { assert (CollectionUtil.first(partitions) != txn_entry.getExecutionPartition()) : txn_entry.debug(); exec_mismatch_ctrs[i] += txn_weight; partitions_touched[i] += txn_weight; } else { assert (partitions.size() > 1) : String.format( "%s is not marked as single-partition but it only touches one partition\n%s", txn_trace, txn_entry.debug()); } partitions_touched[i] += (partitions.size() * txn_weight); // Txns multipartition_ctrs[i] += txn_weight; histogram_mp_procs.put(proc_key, txn_weight); } Integer base_partition = txn_entry.getExecutionPartition(); if (base_partition != null) { exec_histogram[i].put(base_partition, txn_weight); } else { exec_histogram[i].put(all_partitions, txn_weight); } if (debug.val) { // && // txn_trace.getCatalogItemName().equalsIgnoreCase("DeleteCallForwarding")) // { Procedure catalog_proc = txn_trace.getCatalogItem(catalogContext.database); Map<String, Object> inner = new LinkedHashMap<String, Object>(); for (Statement catalog_stmt : catalog_proc.getStatements()) { inner.put(catalog_stmt.fullName(), CatalogUtil.getReferencedTables(catalog_stmt)); } Map<String, Object> m = new LinkedHashMap<String, Object>(); m.put(txn_trace.toString(), null); m.put("Interval", i); m.put("Single-Partition", txn_entry.isSinglePartitioned()); m.put("Base Partition", base_partition); m.put("Touched Partitions", partitions); m.put(catalog_proc.fullName(), inner); LOG.debug(StringUtil.formatMaps(m)); } // We need to keep a count of the number txns that didn't have // all of its queries estimated // completely so that we can update the access histograms down // below for entropy calculations // Note that this is at the txn level, not the query level. if (!txn_entry.isComplete()) { incomplete_txn_ctrs[i] += txn_weight; tmp_missingPartitions.clear(); tmp_missingPartitions.addAll(all_partitions); tmp_missingPartitions.removeAll(txn_entry.getTouchedPartitions()); // Update the histogram for this interval to keep track of // how many times we need to // increase the partition access histogram incomplete_txn_histogram[i].put(tmp_missingPartitions, txn_weight); if (trace.val) { Map<String, Object> m = new LinkedHashMap<String, Object>(); m.put(String.format("Marking %s as incomplete in interval #%d", txn_trace, i), null); m.put("Examined Queries", txn_entry.getExaminedQueryCount()); m.put("Total Queries", txn_entry.getTotalQueryCount()); m.put("Touched Partitions", txn_entry.getTouchedPartitions()); m.put("Missing Partitions", tmp_missingPartitions); LOG.trace(StringUtil.formatMaps(m)); } } } catch (Exception ex) { CatalogUtil.saveCatalog(catalogContext.catalog, CatalogUtil.CATALOG_FILENAME); throw new RuntimeException( "Failed to estimate cost for " + txn_trace.getCatalogItemName() + " at interval " + i, ex); } }
@Override protected double estimateWorkloadCostImpl( final CatalogContext catalogContext, final Workload workload, final Filter filter, final Double upper_bound) throws Exception { if (debug.val) LOG.debug( "Calculating workload execution cost across " + num_intervals + " intervals for " + num_partitions + " partitions"); // (1) Grab the costs at the different time intervals // Also create the ratios that we will use to weight the interval costs final AtomicLong total_txns = new AtomicLong(0); // final HashSet<Long> trace_ids[] = new HashSet[num_intervals]; for (int i = 0; i < num_intervals; i++) { total_interval_txns[i] = 0; total_interval_queries[i] = 0; singlepartition_ctrs[i] = 0; singlepartition_with_partitions_ctrs[i] = 0; multipartition_ctrs[i] = 0; partitions_touched[i] = 0; incomplete_txn_ctrs[i] = 0; exec_mismatch_ctrs[i] = 0; incomplete_txn_histogram[i].clear(); missing_txn_histogram[i].clear(); exec_histogram[i].clear(); } // FOR // (2) Now go through the workload and estimate the partitions that each txn // will touch for the given catalog setups if (trace.val) { LOG.trace("Total # of Txns in Workload: " + workload.getTransactionCount()); if (filter != null) LOG.trace( "Workload Filter Chain: " + StringUtil.join(" ", "\n", filter.getFilters())); } // QUEUING THREAD tmp_consumers.clear(); Producer<TransactionTrace, Pair<TransactionTrace, Integer>> producer = new Producer<TransactionTrace, Pair<TransactionTrace, Integer>>( CollectionUtil.iterable(workload.iterator(filter))) { @Override public Pair<Consumer<Pair<TransactionTrace, Integer>>, Pair<TransactionTrace, Integer>> transform(TransactionTrace txn_trace) { int i = workload.getTimeInterval(txn_trace, num_intervals); assert (i >= 0) : "Invalid time interval '" + i + "'\n" + txn_trace.debug(catalogContext.database); assert (i < num_intervals) : "Invalid interval: " + i + "\n" + txn_trace.debug(catalogContext.database); total_txns.incrementAndGet(); Pair<TransactionTrace, Integer> p = Pair.of(txn_trace, i); return (Pair.of(tmp_consumers.get(i), p)); } }; // PROCESSING THREADS final int num_threads = ThreadUtil.getMaxGlobalThreads(); int interval_ctr = 0; for (int thread = 0; thread < num_threads; thread++) { // First create a new IntervalProcessor/Consumer IntervalProcessor ip = new IntervalProcessor(catalogContext, workload, filter); // Then assign it to some number of intervals for (int i = 0, cnt = (int) Math.ceil(num_intervals / (double) num_threads); i < cnt; i++) { if (interval_ctr > num_intervals) break; tmp_consumers.put(interval_ctr++, ip); if (trace.val) LOG.trace( String.format("Interval #%02d => IntervalProcessor #%02d", interval_ctr - 1, thread)); } // FOR // And make sure that we queue it up too producer.addConsumer(ip); } // FOR (threads) ThreadUtil.runGlobalPool(producer.getRunnablesList()); // BLOCKING if (debug.val) { int processed = 0; for (Consumer<?> c : producer.getConsumers()) { processed += c.getProcessedCounter(); } // FOR assert (total_txns.get() == processed) : String.format("Expected[%d] != Processed[%d]", total_txns.get(), processed); } // We have to convert all of the costs into the range of [0.0, 1.0] // For each interval, divide the number of partitions touched by the total number // of partitions that the interval could have touched (worst case scenario) final double execution_costs[] = new double[num_intervals]; StringBuilder sb = (this.isDebugEnabled() || debug.get() ? new StringBuilder() : null); Map<String, Object> debug_m = null; if (sb != null) { debug_m = new LinkedHashMap<String, Object>(); } if (debug.val) LOG.debug("Calculating execution cost for " + this.num_intervals + " intervals..."); long total_multipartition_txns = 0; for (int i = 0; i < this.num_intervals; i++) { interval_weights[i] = total_interval_txns[i] / (double) total_txns.get(); long total_txns_in_interval = (long) total_interval_txns[i]; long total_queries_in_interval = (long) total_interval_queries[i]; long num_txns = this.cost_models[i].txn_ctr.get(); long potential_txn_touches = (total_txns_in_interval * num_partitions); // TXNS double penalty = 0.0d; total_multipartition_txns += multipartition_ctrs[i]; // Divide the total number of partitions touched by... // This is the total number of partitions that we could have touched // in this interval // And this is the total number of partitions that we did actually touch if (multipartition_ctrs[i] > 0) { assert (partitions_touched[i] > 0) : "No touched partitions for interval " + i; double cost = (partitions_touched[i] / (double) potential_txn_touches); if (this.use_multitpartition_penalty) { penalty = this.multipartition_penalty * (1.0d + (multipartition_ctrs[i] / (double) total_txns_in_interval)); assert (penalty >= 1.0) : "The multipartition penalty is less than one: " + penalty; cost *= penalty; } execution_costs[i] = Math.min(cost, (double) potential_txn_touches); } // For each txn that wasn't even evaluated, add all of the // partitions to the incomplete histogram if (num_txns < total_txns_in_interval) { if (trace.val) LOG.trace( "Adding " + (total_txns_in_interval - num_txns) + " entries to the incomplete histogram for interval #" + i); for (long ii = num_txns; ii < total_txns_in_interval; ii++) { missing_txn_histogram[i].put(all_partitions); } // WHILE } if (sb != null) { tmp_penalties.add(penalty); tmp_total.add(total_txns_in_interval); tmp_touched.add(partitions_touched[i]); tmp_potential.add(potential_txn_touches); Map<String, Object> inner = new LinkedHashMap<String, Object>(); inner.put("Partitions Touched", partitions_touched[i]); inner.put("Potential Touched", potential_txn_touches); inner.put("Multi-Partition Txns", multipartition_ctrs[i]); inner.put("Total Txns", total_txns_in_interval); inner.put("Total Queries", total_queries_in_interval); inner.put("Missing Txns", (total_txns_in_interval - num_txns)); inner.put("Cost", String.format("%.05f", execution_costs[i])); inner.put("Exec Txns", exec_histogram[i].getSampleCount()); debug_m.put("Interval #" + i, inner); } } // FOR if (sb != null) { Map<String, Object> m0 = new LinkedHashMap<String, Object>(); m0.put("SinglePartition Txns", (total_txns.get() - total_multipartition_txns)); m0.put("MultiPartition Txns", total_multipartition_txns); m0.put( "Total Txns", String.format( "%d [%.06f]", total_txns.get(), (1.0d - (total_multipartition_txns / (double) total_txns.get())))); Map<String, Object> m1 = new LinkedHashMap<String, Object>(); m1.put("Touched Partitions", tmp_touched); m1.put("Potential Partitions", tmp_potential); m1.put("Total Partitions", tmp_total); m1.put("Penalties", tmp_penalties); sb.append(StringUtil.formatMaps(debug_m, m0, m1)); if (debug.val) LOG.debug("**** Execution Cost ****\n" + sb); this.appendDebugMessage(sb); } // LOG.debug("Execution By Intervals:\n" + sb.toString()); // (3) We then need to go through and grab the histograms of partitions were accessed if (sb != null) { if (debug.val) LOG.debug("Calculating skew factor for " + this.num_intervals + " intervals..."); debug_histograms.clear(); sb = new StringBuilder(); } for (int i = 0; i < this.num_intervals; i++) { ObjectHistogram<Integer> histogram_txn = this.cost_models[i].getTxnPartitionAccessHistogram(); ObjectHistogram<Integer> histogram_query = this.cost_models[i].getQueryPartitionAccessHistogram(); this.histogram_query_partitions.put(histogram_query); long num_queries = this.cost_models[i].query_ctr.get(); this.query_ctr.addAndGet(num_queries); // DEBUG SingleSitedCostModel inner_costModel = (SingleSitedCostModel) this.cost_models[i]; boolean is_valid = (partitions_touched[i] + singlepartition_with_partitions_ctrs[i]) == (this.cost_models[i].getTxnPartitionAccessHistogram().getSampleCount() + exec_mismatch_ctrs[i]); if (!is_valid) { LOG.error("Transaction Entries: " + inner_costModel.getTransactionCacheEntries().size()); ObjectHistogram<Integer> check = new ObjectHistogram<Integer>(); for (TransactionCacheEntry tce : inner_costModel.getTransactionCacheEntries()) { check.put(tce.getTouchedPartitions()); // LOG.error(tce.debug() + "\n"); } LOG.error( "Check Touched Partitions: sample=" + check.getSampleCount() + ", values=" + check.getValueCount()); LOG.error( "Cache Touched Partitions: sample=" + this.cost_models[i].getTxnPartitionAccessHistogram().getSampleCount() + ", values=" + this.cost_models[i].getTxnPartitionAccessHistogram().getValueCount()); int qtotal = inner_costModel.getAllQueryCacheEntries().size(); int ctr = 0; int multip = 0; for (QueryCacheEntry qce : inner_costModel.getAllQueryCacheEntries()) { ctr += (qce.getAllPartitions().isEmpty() ? 0 : 1); multip += (qce.getAllPartitions().size() > 1 ? 1 : 0); } // FOR LOG.error("# of QueryCacheEntries with Touched Partitions: " + ctr + " / " + qtotal); LOG.error("# of MultiP QueryCacheEntries: " + multip); } assert (is_valid) : String.format( "Partitions Touched by Txns Mismatch in Interval #%d\n" + "(partitions_touched[%d] + singlepartition_with_partitions_ctrs[%d]) != " + "(histogram_txn[%d] + exec_mismatch_ctrs[%d])", i, partitions_touched[i], singlepartition_with_partitions_ctrs[i], this.cost_models[i].getTxnPartitionAccessHistogram().getSampleCount(), exec_mismatch_ctrs[i]); this.histogram_java_partitions.put(this.cost_models[i].getJavaExecutionHistogram()); this.histogram_txn_partitions.put(histogram_txn); long num_txns = this.cost_models[i].txn_ctr.get(); assert (num_txns >= 0) : "The transaction counter at interval #" + i + " is " + num_txns; this.txn_ctr.addAndGet(num_txns); // Calculate the skew factor at this time interval // XXX: Should the number of txns be the total number of unique txns // that were executed or the total number of times a txn touched the partitions? // XXX: What do we do when the number of elements that we are examining is zero? // I guess the cost just needs to be zero? // XXX: What histogram do we want to use? target_histogram.clear(); target_histogram.put(histogram_txn); // For each txn that we haven't gotten an estimate for at this interval, // we're going mark it as being broadcast to all partitions. That way the access // histogram will look uniform. Then as more information is added, we will // This is an attempt to make sure that the skew cost never decreases but only increases long total_txns_in_interval = (long) total_interval_txns[i]; if (sb != null) { debug_histograms.put("Incomplete Txns", incomplete_txn_histogram[i]); debug_histograms.put("Missing Txns", missing_txn_histogram[i]); debug_histograms.put( "Target Partitions (BEFORE)", new ObjectHistogram<Integer>(target_histogram)); debug_histograms.put("Target Partitions (AFTER)", target_histogram); } // Merge the values from incomplete histogram into the target // histogram target_histogram.put(incomplete_txn_histogram[i]); target_histogram.put(missing_txn_histogram[i]); exec_histogram[i].put(missing_txn_histogram[i]); long num_elements = target_histogram.getSampleCount(); // The number of partition touches should never be greater than our // potential touches assert (num_elements <= (total_txns_in_interval * num_partitions)) : "New Partitions Touched Sample Count [" + num_elements + "] < " + "Maximum Potential Touched Count [" + (total_txns_in_interval * num_partitions) + "]"; if (sb != null) { Map<String, Object> m = new LinkedHashMap<String, Object>(); for (String key : debug_histograms.keySet()) { ObjectHistogram<?> h = debug_histograms.get(key); m.put( key, String.format("[Sample=%d, Value=%d]\n%s", h.getSampleCount(), h.getValueCount(), h)); } // FOR sb.append( String.format( "INTERVAL #%d [total_txns_in_interval=%d, num_txns=%d, incomplete_txns=%d]\n%s", i, total_txns_in_interval, num_txns, incomplete_txn_ctrs[i], StringUtil.formatMaps(m))); } // Txn Skew if (num_elements == 0) { txn_skews[i] = 0.0d; } else { txn_skews[i] = SkewFactorUtil.calculateSkew(num_partitions, num_elements, target_histogram); } // Exec Skew if (exec_histogram[i].getSampleCount() == 0) { exec_skews[i] = 0.0d; } else { exec_skews[i] = SkewFactorUtil.calculateSkew( num_partitions, exec_histogram[i].getSampleCount(), exec_histogram[i]); } total_skews[i] = (0.5 * exec_skews[i]) + (0.5 * txn_skews[i]); if (sb != null) { sb.append("Txn Skew = " + MathUtil.roundToDecimals(txn_skews[i], 6) + "\n"); sb.append("Exec Skew = " + MathUtil.roundToDecimals(exec_skews[i], 6) + "\n"); sb.append("Total Skew = " + MathUtil.roundToDecimals(total_skews[i], 6) + "\n"); sb.append(StringUtil.DOUBLE_LINE); } } // FOR if (sb != null && sb.length() > 0) { if (debug.val) LOG.debug("**** Skew Factor ****\n" + sb); this.appendDebugMessage(sb); } if (trace.val) { for (int i = 0; i < num_intervals; i++) { LOG.trace( "Time Interval #" + i + "\n" + "Total # of Txns: " + this.cost_models[i].txn_ctr.get() + "\n" + "Multi-Partition Txns: " + multipartition_ctrs[i] + "\n" + "Execution Cost: " + execution_costs[i] + "\n" + "ProcHistogram:\n" + this.cost_models[i].getProcedureHistogram().toString() + "\n" + // "TransactionsPerPartitionHistogram:\n" + // this.cost_models[i].getTxnPartitionAccessHistogram() // + "\n" + StringUtil.SINGLE_LINE); } } // (3) We can now calculate the final total estimate cost of this workload as the following // Just take the simple ratio of mp txns / all txns this.last_execution_cost = MathUtil.weightedMean( execution_costs, total_interval_txns); // MathUtil.roundToDecimals(MathUtil.geometricMean(execution_costs, // MathUtil.GEOMETRIC_MEAN_ZERO), // 10); // The final skew cost needs to be weighted by the percentage of txns running in that interval // This will cause the partitions with few txns this.last_skew_cost = MathUtil.weightedMean( total_skews, total_interval_txns); // roundToDecimals(MathUtil.geometricMean(entropies, // MathUtil.GEOMETRIC_MEAN_ZERO), // 10); double new_final_cost = (this.use_execution ? (this.execution_weight * this.last_execution_cost) : 0) + (this.use_skew ? (this.skew_weight * this.last_skew_cost) : 0); if (sb != null) { Map<String, Object> m = new LinkedHashMap<String, Object>(); m.put("Total Txns", total_txns.get()); m.put("Interval Txns", Arrays.toString(total_interval_txns)); m.put("Execution Costs", Arrays.toString(execution_costs)); m.put("Skew Factors", Arrays.toString(total_skews)); m.put("Txn Skew", Arrays.toString(txn_skews)); m.put("Exec Skew", Arrays.toString(exec_skews)); m.put("Interval Weights", Arrays.toString(interval_weights)); m.put( "Final Cost", String.format( "%f = %f + %f", new_final_cost, this.last_execution_cost, this.last_skew_cost)); if (debug.val) LOG.debug(StringUtil.formatMaps(m)); this.appendDebugMessage(StringUtil.formatMaps(m)); } this.last_final_cost = new_final_cost; return (MathUtil.roundToDecimals(this.last_final_cost, 5)); }