@Test public void testNumbers() { Real a = Real.valueOf(1.2); Real b = Real.valueOf(1.2); Real c = Real.valueOf(2.4); assertEquals(c, a.plus(b)); BigInt i = BigInt.valueOf(10); BigInt j = BigInt.valueOf(12); assertEquals(Real.valueOf(11.2), a.plus(i)); assertEquals(j, i.times(a)); }
@Test public void matrixRemove() { VectorSpace<Vector<Real>, Real> space = provider.getVectorSpaceOver(RealField.getInstance(), 3); Matrix<Real> M = space.matrix(3, 3, Real.valueOf(1, 1, 2, 1, 2, 1, 2, 1, 1)); M = M.remove(0, 0); assertEquals(2, M.rowsCount()); assertEquals(2, M.columnsCount()); System.out.println(M); assertEquals(Real.valueOf(2), M.get(0, 0)); assertEquals(Real.valueOf(1), M.get(1, 0)); assertEquals(Real.valueOf(1), M.get(0, 1)); assertEquals(Real.valueOf(1), M.get(1, 1)); }
@Test(expected = ArithmeticException.class) public void matrixInversNotExists() { VectorSpace<Vector<Real>, Real> space = provider.getVectorSpaceOver(RealField.getInstance(), 3); Matrix<Real> X = space.matrix( 3, 3, Real.valueOf( 1, 3, 3, 1, 3, 3, // two equal rows => zero determinant 1, 3, 4)); X.inverse(); }
@Test public void matrix() { VectorSpace<Vector<Real>, Real> space = provider.getVectorSpaceOver(RealField.getInstance(), 3); // Vector<Real> v1 = space.vector(1,1,2); // Vector<Real> v2 = space.vector(1,2,1); // Vector<Real> v3 = space.vector(2,1,1); Matrix<Real> M = space.matrix(3, 3, Real.valueOf(1, 1, 2, 1, 2, 1, 2, 1, 1)); Vector<Real> v4 = space.vector(2, 2, 4); // Vector<Real> v5 = space.vector(2,4,2); // Vector<Real> v6 = space.vector(4,2,2); Matrix<Real> N = space.matrix(3, 3, Real.valueOf(2, 2, 4, 2, 4, 2, 4, 2, 2)); // determinant Real det = M.determinant(); assertEquals(Real.valueOf(-4), det); assertEquals(Real.valueOf(4), M.trace()); // transpose assertEquals(M, M.transpose()); // multiplication assertEquals(N, M.times(Real.valueOf(2.0))); // addition assertEquals(N, M.plus(M)); // vector x matrix Vector<Real> v7 = space.vector(12, 10, 10); assertEquals(v7, M.rightTimes(v4)); // Matrix equality Matrix<Real> P = space.matrix(3, 3, Real.valueOf(1, 1, 2, 1, 2, 1, 2, 1, 1)); assertEquals(M, P); // Matrix multiplication Matrix<Real> Q = space.matrix(3, 3, Real.valueOf(12, 10, 10, 10, 12, 10, 10, 10, 12)); assertEquals(Q, M.times(N)); // Adjoint Matrix<Real> A = space.matrix(3, 3, Real.valueOf(1, 1, -3, 1, -3, 1, -3, 1, 1)); assertEquals(A, M.adjoint()); // Identity Multiplication Matrix<Real> I = space.identity(3); assertEquals(I, I.times(I)); assertEquals(I.getRow(1), I.getColumn(1)); Matrix<Real> X = space.matrix(3, 3, Real.valueOf(1, 3, 3, 1, 4, 3, 1, 3, 4)); // Identity relation M = M.I and M = I.M assertEquals(X, X.times(I)); assertEquals(X, I.times(X)); Matrix<Real> XInv = space.matrix(3, 3, Real.valueOf(7, -3, -3, -1, 1, 0, -1, 0, 1)); // inverse assertEquals(XInv, X.inverse()); // Invertion relation I = M.M^-1 assertEquals(I, X.times(X.inverse())); // transpose of the transpose is it self assertTrue(M == M.transpose().transpose()); }
@Test public void matrixLU() { VectorSpace<Vector<Real>, Real> space = provider.getVectorSpaceOver(RealField.getInstance(), 3); // http://en.wikipedia.org/wiki/LU_decomposition Matrix<Real> A = space.matrix( 2, 2, Real.valueOf( 4, 3, 6, 3)); Matrix<Real> U = space.matrix(2, 2, Real.valueOf(4, 3, 0, -1.5)); Matrix<Real> L = space.matrix(2, 2, Real.valueOf(1, 0, 1.5, 1)); LuDecomposition<Real> lud = LuDecomposition.decompose(A); assertEquals("Incorrect 2x2 L", L, lud.getL()); assertEquals("Incorrect 2x2 U", U, lud.getU()); assertEquals(A, L.times(U)); assertEquals(A, lud.getL().times(lud.getU())); A = space.matrix(3, 3, Real.valueOf(6, -2, 0, 9, -1, 1, 3, 7, 5)); U = space.matrix( 3, 3, new Real[] { Real.valueOf(6), Real.valueOf(-2), Real.valueOf(0), Real.valueOf(0), Real.valueOf(2), Real.valueOf(1), Real.valueOf(0), Real.valueOf(0), Real.valueOf(1) }); L = space.matrix( 3, 3, new Real[] { Real.valueOf(1), Real.valueOf(0), Real.valueOf(0), Real.valueOf(3, 2), Real.valueOf(1), Real.valueOf(0), Real.valueOf(1, 2), Real.valueOf(4), Real.valueOf(1) }); assertEquals("wrong test data", A, L.times(U)); lud = LuDecomposition.decompose(A); assertEquals("Incorrect decomposition product", A, lud.getL().times(lud.getU())); assertEquals("Incorrect 3x3 L", L, lud.getL()); assertEquals("Incorrect 3x3 U", U, lud.getU()); Matrix<Real> N = space.matrix(3, 3, Real.valueOf(1, 1, 2, 1, 2, 1, 2, 1, 1)); lud = LuDecomposition.decompose(N); assertEquals(N, lud.getL().times(lud.getU())); }