Пример #1
0
  /**
   * Compute next=state probabilities. i.e. compute the probability of being in a state in {@code
   * target} in the next step.
   *
   * @param stpg The STPG
   * @param target Target states
   * @param min1 Min or max probabilities for player 1 (true=lower bound, false=upper bound)
   * @param min2 Min or max probabilities for player 2 (true=min, false=max)
   */
  public ModelCheckerResult computeNextProbs(STPG stpg, BitSet target, boolean min1, boolean min2)
      throws PrismException {
    ModelCheckerResult res = null;
    int n;
    double soln[], soln2[];
    long timer;

    timer = System.currentTimeMillis();

    // Store num states
    n = stpg.getNumStates();

    // Create/initialise solution vector(s)
    soln = Utils.bitsetToDoubleArray(target, n);
    soln2 = new double[n];

    // Next-step probabilities
    stpg.mvMultMinMax(soln, min1, min2, soln2, null, false, null);

    // Return results
    res = new ModelCheckerResult();
    res.soln = soln2;
    res.numIters = 1;
    res.timeTaken = timer / 1000.0;
    return res;
  }
Пример #2
0
  /**
   * Compute bounded reachability/until probabilities. i.e. compute the min/max probability of
   * reaching a state in {@code target}, within time t, and while remaining in states in @{code
   * remain}.
   *
   * @param ctmdp The CTMDP
   * @param remain Remain in these states (optional: null means "all")
   * @param target Target states
   * @param t: Time bound
   * @param min Min or max probabilities (true=min, false=max)
   * @param init: Initial solution vector - pass null for default
   * @param results: Optional array of size b+1 to store (init state) results for each step (null if
   *     unused)
   */
  public ModelCheckerResult computeBoundedReachProbsOld(
      CTMDP ctmdp,
      BitSet remain,
      BitSet target,
      double t,
      boolean min,
      double init[],
      double results[])
      throws PrismException {
    // TODO: implement until

    ModelCheckerResult res = null;
    int i, n, iters;
    double soln[], soln2[], tmpsoln[], sum[];
    long timer;
    // Fox-Glynn stuff
    FoxGlynn fg;
    int left, right;
    double q, qt, weights[], totalWeight;

    // Start bounded probabilistic reachability
    timer = System.currentTimeMillis();
    mainLog.println("Starting time-bounded probabilistic reachability...");

    // Store num states
    n = ctmdp.getNumStates();

    // Get uniformisation rate; do Fox-Glynn
    q = 99; // ctmdp.unif;
    qt = q * t;
    mainLog.println("\nUniformisation: q.t = " + q + " x " + t + " = " + qt);
    fg = new FoxGlynn(qt, 1e-300, 1e+300, termCritParam / 8.0);
    left = fg.getLeftTruncationPoint();
    right = fg.getRightTruncationPoint();
    if (right < 0) {
      throw new PrismException("Overflow in Fox-Glynn computation (time bound too big?)");
    }
    weights = fg.getWeights();
    totalWeight = fg.getTotalWeight();
    for (i = left; i <= right; i++) {
      weights[i - left] /= totalWeight;
    }
    mainLog.println("Fox-Glynn: left = " + left + ", right = " + right);

    // Create solution vector(s)
    soln = new double[n];
    soln2 = (init == null) ? new double[n] : init;
    sum = new double[n];

    // Initialise solution vectors. Use passed in initial vector, if present
    if (init != null) {
      for (i = 0; i < n; i++) soln[i] = soln2[i] = target.get(i) ? 1.0 : init[i];
    } else {
      for (i = 0; i < n; i++) soln[i] = soln2[i] = target.get(i) ? 1.0 : 0.0;
    }
    for (i = 0; i < n; i++) sum[i] = 0.0;

    // If necessary, do 0th element of summation (doesn't require any matrix powers)
    if (left == 0) for (i = 0; i < n; i++) sum[i] += weights[0] * soln[i];

    // Start iterations
    iters = 1;
    while (iters <= right) {
      // Matrix-vector multiply and min/max ops
      ctmdp.mvMultMinMax(soln, min, soln2, target, true, null);
      // Since is globally uniform, can do this? and more?
      for (i = 0; i < n; i++) soln2[i] /= q;
      // Store intermediate results if required
      // TODO?
      // Swap vectors for next iter
      tmpsoln = soln;
      soln = soln2;
      soln2 = tmpsoln;
      // Add to sum
      if (iters >= left) {
        for (i = 0; i < n; i++) sum[i] += weights[iters - left] * soln[i];
      }
      iters++;
    }

    // Print vector (for debugging)
    mainLog.println(sum);

    // Finished bounded probabilistic reachability
    timer = System.currentTimeMillis() - timer;
    mainLog.print("Time-bounded probabilistic reachability (" + (min ? "min" : "max") + ")");
    mainLog.println(" took " + iters + " iters and " + timer / 1000.0 + " seconds.");

    // Return results
    res = new ModelCheckerResult();
    res.soln = sum;
    res.lastSoln = soln2;
    res.numIters = iters;
    res.timeTaken = timer / 1000.0;
    return res;
  }
Пример #3
0
  /**
   * Compute expected reachability rewards. i.e. compute the min/max reward accumulated to reach a
   * state in {@code target}.
   *
   * @param stpg The STPG
   * @param rewards The rewards
   * @param target Target states
   * @param min1 Min or max rewards for player 1 (true=min, false=max)
   * @param min2 Min or max rewards for player 2 (true=min, false=max)
   * @param init Optionally, an initial solution vector (may be overwritten)
   * @param known Optionally, a set of states for which the exact answer is known Note: if 'known'
   *     is specified (i.e. is non-null, 'init' must also be given and is used for the exact values.
   */
  public ModelCheckerResult computeReachRewards(
      STPG stpg,
      STPGRewards rewards,
      BitSet target,
      boolean min1,
      boolean min2,
      double init[],
      BitSet known)
      throws PrismException {
    ModelCheckerResult res = null;
    BitSet inf;
    int i, n, numTarget, numInf;
    long timer, timerProb1;

    // Start expected reachability
    timer = System.currentTimeMillis();
    if (verbosity >= 1) mainLog.println("\nStarting expected reachability...");

    // Check for deadlocks in non-target state (because breaks e.g. prob1)
    stpg.checkForDeadlocks(target);

    // Store num states
    n = stpg.getNumStates();

    // Optimise by enlarging target set (if more info is available)
    if (init != null && known != null) {
      BitSet targetNew = new BitSet(n);
      for (i = 0; i < n; i++) {
        targetNew.set(i, target.get(i) || (known.get(i) && init[i] == 0.0));
      }
      target = targetNew;
    }

    // Precomputation (not optional)
    timerProb1 = System.currentTimeMillis();
    inf = prob1(stpg, null, target, !min1, !min2);
    inf.flip(0, n);
    timerProb1 = System.currentTimeMillis() - timerProb1;

    // Print results of precomputation
    numTarget = target.cardinality();
    numInf = inf.cardinality();
    if (verbosity >= 1)
      mainLog.println(
          "target=" + numTarget + ", inf=" + numInf + ", rest=" + (n - (numTarget + numInf)));

    // Compute rewards
    switch (solnMethod) {
      case VALUE_ITERATION:
        res = computeReachRewardsValIter(stpg, rewards, target, inf, min1, min2, init, known);
        break;
      default:
        throw new PrismException("Unknown STPG solution method " + solnMethod);
    }

    // Finished expected reachability
    timer = System.currentTimeMillis() - timer;
    if (verbosity >= 1)
      mainLog.println("Expected reachability took " + timer / 1000.0 + " seconds.");

    // Update time taken
    res.timeTaken = timer / 1000.0;
    res.timePre = timerProb1 / 1000.0;

    return res;
  }
Пример #4
0
  /**
   * Compute bounded reachability/until probabilities. i.e. compute the min/max probability of
   * reaching a state in {@code target}, within k steps, and while remaining in states in @{code
   * remain}.
   *
   * @param stpg The STPG
   * @param remain Remain in these states (optional: null means "all")
   * @param target Target states
   * @param k Bound
   * @param min1 Min or max probabilities for player 1 (true=lower bound, false=upper bound)
   * @param min2 Min or max probabilities for player 2 (true=min, false=max)
   * @param init Initial solution vector - pass null for default
   * @param results Optional array of size k+1 to store (init state) results for each step (null if
   *     unused)
   */
  public ModelCheckerResult computeBoundedReachProbs(
      STPG stpg,
      BitSet remain,
      BitSet target,
      int k,
      boolean min1,
      boolean min2,
      double init[],
      double results[])
      throws PrismException {
    // TODO: implement until

    ModelCheckerResult res = null;
    int i, n, iters;
    double soln[], soln2[], tmpsoln[];
    long timer;

    // Start bounded probabilistic reachability
    timer = System.currentTimeMillis();
    if (verbosity >= 1) mainLog.println("\nStarting bounded probabilistic reachability...");

    // Store num states
    n = stpg.getNumStates();

    // Create solution vector(s)
    soln = new double[n];
    soln2 = (init == null) ? new double[n] : init;

    // Initialise solution vectors. Use passed in initial vector, if present
    if (init != null) {
      for (i = 0; i < n; i++) soln[i] = soln2[i] = target.get(i) ? 1.0 : init[i];
    } else {
      for (i = 0; i < n; i++) soln[i] = soln2[i] = target.get(i) ? 1.0 : 0.0;
    }
    // Store intermediate results if required
    // (compute min/max value over initial states for first step)
    if (results != null) {
      results[0] = Utils.minMaxOverArraySubset(soln2, stpg.getInitialStates(), min2);
    }

    // Start iterations
    iters = 0;
    while (iters < k) {
      iters++;
      // Matrix-vector multiply and min/max ops
      stpg.mvMultMinMax(soln, min1, min2, soln2, target, true, null);
      // Store intermediate results if required
      // (compute min/max value over initial states for this step)
      if (results != null) {
        results[iters] = Utils.minMaxOverArraySubset(soln2, stpg.getInitialStates(), min2);
      }
      // Swap vectors for next iter
      tmpsoln = soln;
      soln = soln2;
      soln2 = tmpsoln;
    }

    // Print vector (for debugging)
    // mainLog.println(soln);

    // Finished bounded probabilistic reachability
    timer = System.currentTimeMillis() - timer;
    if (verbosity >= 1) {
      mainLog.print(
          "Bounded probabilistic reachability ("
              + (min1 ? "min" : "max")
              + (min2 ? "min" : "max")
              + ")");
      mainLog.println(" took " + iters + " iterations and " + timer / 1000.0 + " seconds.");
    }

    // Return results
    res = new ModelCheckerResult();
    res.soln = soln;
    res.lastSoln = soln2;
    res.numIters = iters;
    res.timeTaken = timer / 1000.0;
    res.timePre = 0.0;
    return res;
  }
Пример #5
0
  /**
   * Compute reachability probabilities using Gauss-Seidel.
   *
   * @param stpg The STPG
   * @param no Probability 0 states
   * @param yes Probability 1 states
   * @param min1 Min or max probabilities for player 1 (true=lower bound, false=upper bound)
   * @param min2 Min or max probabilities for player 2 (true=min, false=max)
   * @param init Optionally, an initial solution vector (will be overwritten)
   * @param known Optionally, a set of states for which the exact answer is known Note: if 'known'
   *     is specified (i.e. is non-null, 'init' must also be given and is used for the exact values.
   */
  protected ModelCheckerResult computeReachProbsGaussSeidel(
      STPG stpg, BitSet no, BitSet yes, boolean min1, boolean min2, double init[], BitSet known)
      throws PrismException {
    ModelCheckerResult res;
    BitSet unknown;
    int i, n, iters;
    double soln[], initVal, maxDiff;
    boolean done;
    long timer;

    // Start value iteration
    timer = System.currentTimeMillis();
    if (verbosity >= 1)
      mainLog.println(
          "Starting value iteration (" + (min1 ? "min" : "max") + (min2 ? "min" : "max") + ")...");

    // Store num states
    n = stpg.getNumStates();

    // Create solution vector
    soln = (init == null) ? new double[n] : init;

    // Initialise solution vector. Use (where available) the following in order of preference:
    // (1) exact answer, if already known; (2) 1.0/0.0 if in yes/no; (3) passed in initial value;
    // (4) initVal
    // where initVal is 0.0 or 1.0, depending on whether we converge from below/above.
    initVal = (valIterDir == ValIterDir.BELOW) ? 0.0 : 1.0;
    if (init != null) {
      if (known != null) {
        for (i = 0; i < n; i++)
          soln[i] = known.get(i) ? init[i] : yes.get(i) ? 1.0 : no.get(i) ? 0.0 : init[i];
      } else {
        for (i = 0; i < n; i++) soln[i] = yes.get(i) ? 1.0 : no.get(i) ? 0.0 : init[i];
      }
    } else {
      for (i = 0; i < n; i++) soln[i] = yes.get(i) ? 1.0 : no.get(i) ? 0.0 : initVal;
    }

    // Determine set of states actually need to compute values for
    unknown = new BitSet();
    unknown.set(0, n);
    unknown.andNot(yes);
    unknown.andNot(no);
    if (known != null) unknown.andNot(known);

    // Start iterations
    iters = 0;
    done = false;
    while (!done && iters < maxIters) {
      iters++;
      // Matrix-vector multiply and min/max ops
      maxDiff =
          stpg.mvMultGSMinMax(soln, min1, min2, unknown, false, termCrit == TermCrit.ABSOLUTE);
      // Check termination
      done = maxDiff < termCritParam;
    }

    // Finished Gauss-Seidel
    timer = System.currentTimeMillis() - timer;
    if (verbosity >= 1) {
      mainLog.print("Value iteration (" + (min1 ? "min" : "max") + (min2 ? "min" : "max") + ")");
      mainLog.println(" took " + iters + " iterations and " + timer / 1000.0 + " seconds.");
    }

    // Non-convergence is an error (usually)
    if (!done && errorOnNonConverge) {
      String msg = "Iterative method did not converge within " + iters + " iterations.";
      msg +=
          "\nConsider using a different numerical method or increasing the maximum number of iterations";
      throw new PrismException(msg);
    }

    // Return results
    res = new ModelCheckerResult();
    res.soln = soln;
    res.numIters = iters;
    res.timeTaken = timer / 1000.0;
    return res;
  }
Пример #6
0
  /**
   * Compute reachability probabilities using value iteration.
   *
   * @param stpg The STPG
   * @param no Probability 0 states
   * @param yes Probability 1 states
   * @param min1 Min or max probabilities for player 1 (true=lower bound, false=upper bound)
   * @param min2 Min or max probabilities for player 2 (true=min, false=max)
   * @param init Optionally, an initial solution vector (will be overwritten)
   * @param known Optionally, a set of states for which the exact answer is known Note: if 'known'
   *     is specified (i.e. is non-null, 'init' must also be given and is used for the exact values.
   */
  protected ModelCheckerResult computeReachProbsValIter(
      STPG stpg, BitSet no, BitSet yes, boolean min1, boolean min2, double init[], BitSet known)
      throws PrismException {
    ModelCheckerResult res = null;
    BitSet unknown;
    int i, n, iters;
    double soln[], soln2[], tmpsoln[], initVal;
    int adv[] = null;
    boolean genAdv, done;
    long timer;

    // Are we generating an optimal adversary?
    genAdv = exportAdv;

    // Start value iteration
    timer = System.currentTimeMillis();
    if (verbosity >= 1)
      mainLog.println(
          "Starting value iteration (" + (min1 ? "min" : "max") + (min2 ? "min" : "max") + ")...");

    // Store num states
    n = stpg.getNumStates();

    // Create solution vector(s)
    soln = new double[n];
    soln2 = (init == null) ? new double[n] : init;

    // Initialise solution vectors. Use (where available) the following in order of preference:
    // (1) exact answer, if already known; (2) 1.0/0.0 if in yes/no; (3) passed in initial value;
    // (4) initVal
    // where initVal is 0.0 or 1.0, depending on whether we converge from below/above.
    initVal = (valIterDir == ValIterDir.BELOW) ? 0.0 : 1.0;
    if (init != null) {
      if (known != null) {
        for (i = 0; i < n; i++)
          soln[i] =
              soln2[i] = known.get(i) ? init[i] : yes.get(i) ? 1.0 : no.get(i) ? 0.0 : init[i];
      } else {
        for (i = 0; i < n; i++) soln[i] = soln2[i] = yes.get(i) ? 1.0 : no.get(i) ? 0.0 : init[i];
      }
    } else {
      for (i = 0; i < n; i++) soln[i] = soln2[i] = yes.get(i) ? 1.0 : no.get(i) ? 0.0 : initVal;
    }

    // Determine set of states actually need to compute values for
    unknown = new BitSet();
    unknown.set(0, n);
    unknown.andNot(yes);
    unknown.andNot(no);
    if (known != null) unknown.andNot(known);

    // Create/initialise adversary storage
    if (genAdv) {
      adv = new int[n];
      for (i = 0; i < n; i++) {
        adv[i] = -1;
      }
    }

    // Start iterations
    iters = 0;
    done = false;
    while (!done && iters < maxIters) {
      iters++;
      // Matrix-vector multiply and min/max ops
      stpg.mvMultMinMax(soln, min1, min2, soln2, unknown, false, genAdv ? adv : null);
      // Check termination
      done = PrismUtils.doublesAreClose(soln, soln2, termCritParam, termCrit == TermCrit.ABSOLUTE);
      // Swap vectors for next iter
      tmpsoln = soln;
      soln = soln2;
      soln2 = tmpsoln;
    }

    // Finished value iteration
    timer = System.currentTimeMillis() - timer;
    if (verbosity >= 1) {
      mainLog.print("Value iteration (" + (min1 ? "min" : "max") + (min2 ? "min" : "max") + ")");
      mainLog.println(" took " + iters + " iterations and " + timer / 1000.0 + " seconds.");
    }

    // Non-convergence is an error (usually)
    if (!done && errorOnNonConverge) {
      String msg = "Iterative method did not converge within " + iters + " iterations.";
      msg +=
          "\nConsider using a different numerical method or increasing the maximum number of iterations";
      throw new PrismException(msg);
    }

    // Print adversary
    if (genAdv) {
      PrismLog out = new PrismFileLog(exportAdvFilename);
      for (i = 0; i < n; i++) {
        out.println(i + " " + (adv[i] != -1 ? stpg.getAction(i, adv[i]) : "-"));
      }
      out.println();
    }

    // Return results
    res = new ModelCheckerResult();
    res.soln = soln;
    res.numIters = iters;
    res.timeTaken = timer / 1000.0;
    return res;
  }
Пример #7
0
  /**
   * Compute reachability/until probabilities. i.e. compute the min/max probability of reaching a
   * state in {@code target}, while remaining in those in @{code remain}.
   *
   * @param stpg The STPG
   * @param remain Remain in these states (optional: null means "all")
   * @param target Target states
   * @param min1 Min or max probabilities for player 1 (true=lower bound, false=upper bound)
   * @param min2 Min or max probabilities for player 2 (true=min, false=max)
   * @param init Optionally, an initial solution vector (may be overwritten)
   * @param known Optionally, a set of states for which the exact answer is known Note: if 'known'
   *     is specified (i.e. is non-null, 'init' must also be given and is used for the exact values.
   */
  public ModelCheckerResult computeReachProbs(
      STPG stpg,
      BitSet remain,
      BitSet target,
      boolean min1,
      boolean min2,
      double init[],
      BitSet known)
      throws PrismException {
    ModelCheckerResult res = null;
    BitSet no, yes;
    int i, n, numYes, numNo;
    long timer, timerProb0, timerProb1;
    boolean genAdv;

    // Check for some unsupported combinations
    if (solnMethod == SolnMethod.VALUE_ITERATION
        && valIterDir == ValIterDir.ABOVE
        && !(precomp && prob0)) {
      throw new PrismException(
          "Precomputation (Prob0) must be enabled for value iteration from above");
    }

    // Are we generating an optimal adversary?
    genAdv = exportAdv;

    // Start probabilistic reachability
    timer = System.currentTimeMillis();
    if (verbosity >= 1) mainLog.println("\nStarting probabilistic reachability...");

    // Check for deadlocks in non-target state (because breaks e.g. prob1)
    stpg.checkForDeadlocks(target);

    // Store num states
    n = stpg.getNumStates();

    // Optimise by enlarging target set (if more info is available)
    if (init != null && known != null) {
      BitSet targetNew = new BitSet(n);
      for (i = 0; i < n; i++) {
        targetNew.set(i, target.get(i) || (known.get(i) && init[i] == 1.0));
      }
      target = targetNew;
    }

    // Precomputation
    timerProb0 = System.currentTimeMillis();
    if (precomp && prob0) {
      no = prob0(stpg, remain, target, min1, min2);
    } else {
      no = new BitSet();
    }
    timerProb0 = System.currentTimeMillis() - timerProb0;
    timerProb1 = System.currentTimeMillis();
    if (precomp && prob1 && !genAdv) {
      yes = prob1(stpg, remain, target, min1, min2);
    } else {
      yes = (BitSet) target.clone();
    }
    timerProb1 = System.currentTimeMillis() - timerProb1;

    // Print results of precomputation
    numYes = yes.cardinality();
    numNo = no.cardinality();
    if (verbosity >= 1)
      mainLog.println(
          "target="
              + target.cardinality()
              + ", yes="
              + numYes
              + ", no="
              + numNo
              + ", maybe="
              + (n - (numYes + numNo)));

    // Compute probabilities
    switch (solnMethod) {
      case VALUE_ITERATION:
        res = computeReachProbsValIter(stpg, no, yes, min1, min2, init, known);
        break;
      case GAUSS_SEIDEL:
        res = computeReachProbsGaussSeidel(stpg, no, yes, min1, min2, init, known);
        break;
      default:
        throw new PrismException("Unknown STPG solution method " + solnMethod);
    }

    // Finished probabilistic reachability
    timer = System.currentTimeMillis() - timer;
    if (verbosity >= 1)
      mainLog.println("Probabilistic reachability took " + timer / 1000.0 + " seconds.");

    // Update time taken
    res.timeTaken = timer / 1000.0;
    res.timeProb0 = timerProb0 / 1000.0;
    res.timePre = (timerProb0 + timerProb1) / 1000.0;

    return res;
  }
Пример #8
0
  /**
   * Compute expected reachability rewards using value iteration.
   *
   * @param stpg The STPG
   * @param rewards The rewards
   * @param target Target states
   * @param inf States for which reward is infinite
   * @param min1 Min or max rewards for player 1 (true=min, false=max)
   * @param min2 Min or max rewards for player 2 (true=min, false=max)
   * @param init Optionally, an initial solution vector (will be overwritten)
   * @param known Optionally, a set of states for which the exact answer is known Note: if 'known'
   *     is specified (i.e. is non-null, 'init' must also be given and is used for the exact values.
   */
  protected ModelCheckerResult computeReachRewardsValIter(
      STPG stpg,
      STPGRewards rewards,
      BitSet target,
      BitSet inf,
      boolean min1,
      boolean min2,
      double init[],
      BitSet known)
      throws PrismException {
    ModelCheckerResult res;
    BitSet unknown;
    int i, n, iters;
    double soln[], soln2[], tmpsoln[];
    boolean done;
    long timer;

    // Start value iteration
    timer = System.currentTimeMillis();
    if (verbosity >= 1)
      mainLog.println(
          "Starting value iteration (" + (min1 ? "min" : "max") + (min2 ? "min" : "max") + ")...");

    // Store num states
    n = stpg.getNumStates();

    // Create solution vector(s)
    soln = new double[n];
    soln2 = (init == null) ? new double[n] : init;

    // Initialise solution vectors. Use (where available) the following in order of preference:
    // (1) exact answer, if already known; (2) 0.0/infinity if in target/inf; (3) passed in initial
    // value; (4) 0.0
    if (init != null) {
      if (known != null) {
        for (i = 0; i < n; i++)
          soln[i] =
              soln2[i] =
                  known.get(i)
                      ? init[i]
                      : target.get(i) ? 0.0 : inf.get(i) ? Double.POSITIVE_INFINITY : init[i];
      } else {
        for (i = 0; i < n; i++)
          soln[i] =
              soln2[i] = target.get(i) ? 0.0 : inf.get(i) ? Double.POSITIVE_INFINITY : init[i];
      }
    } else {
      for (i = 0; i < n; i++)
        soln[i] = soln2[i] = target.get(i) ? 0.0 : inf.get(i) ? Double.POSITIVE_INFINITY : 0.0;
    }

    // Determine set of states actually need to compute values for
    unknown = new BitSet();
    unknown.set(0, n);
    unknown.andNot(target);
    unknown.andNot(inf);
    if (known != null) unknown.andNot(known);

    // Start iterations
    iters = 0;
    done = false;
    while (!done && iters < maxIters) {
      // mainLog.println(soln);
      iters++;
      // Matrix-vector multiply and min/max ops
      stpg.mvMultRewMinMax(soln, rewards, min1, min2, soln2, unknown, false, null);
      // Check termination
      done = PrismUtils.doublesAreClose(soln, soln2, termCritParam, termCrit == TermCrit.ABSOLUTE);
      // Swap vectors for next iter
      tmpsoln = soln;
      soln = soln2;
      soln2 = tmpsoln;
    }

    // Finished value iteration
    timer = System.currentTimeMillis() - timer;
    if (verbosity >= 1) {
      mainLog.print("Value iteration (" + (min1 ? "min" : "max") + (min2 ? "min" : "max") + ")");
      mainLog.println(" took " + iters + " iterations and " + timer / 1000.0 + " seconds.");
    }

    // Non-convergence is an error (usually)
    if (!done && errorOnNonConverge) {
      String msg = "Iterative method did not converge within " + iters + " iterations.";
      msg +=
          "\nConsider using a different numerical method or increasing the maximum number of iterations";
      throw new PrismException(msg);
    }

    // Return results
    res = new ModelCheckerResult();
    res.soln = soln;
    res.numIters = iters;
    res.timeTaken = timer / 1000.0;
    return res;
  }