/** Generate output image whose type is same as input image. */ private ImagePlus makeOutputImage(ImagePlus imp, FloatProcessor fp, int ptype) { int width = imp.getWidth(); int height = imp.getHeight(); float[] pixels = (float[]) fp.getPixels(); ImageProcessor oip = null; // Create output image consistent w/ type of input image. int size = pixels.length; switch (ptype) { case BYTE_TYPE: oip = imp.getProcessor().createProcessor(width, height); byte[] pixels8 = (byte[]) oip.getPixels(); for (int i = 0; i < size; i++) pixels8[i] = (byte) pixels[i]; break; case SHORT_TYPE: oip = imp.getProcessor().createProcessor(width, height); short[] pixels16 = (short[]) oip.getPixels(); for (int i = 0; i < size; i++) pixels16[i] = (short) pixels[i]; break; case FLOAT_TYPE: oip = new FloatProcessor(width, height, pixels, null); break; } // Adjust for display. // Calling this on non-ByteProcessors ensures image // processor is set up to correctly display image. oip.resetMinAndMax(); // Create new image plus object. Don't use // ImagePlus.createImagePlus here because there may be // attributes of input image that are not appropriate for // projection. return new ImagePlus(makeTitle(), oip); }
/** Constructs a Wand object from an ImageProcessor. */ public Wand(ImageProcessor ip) { this.ip = ip; if (ip instanceof ByteProcessor) bpixels = (byte[]) ip.getPixels(); else if (ip instanceof ColorProcessor) cpixels = (int[]) ip.getPixels(); else if (ip instanceof ShortProcessor) spixels = (short[]) ip.getPixels(); else if (ip instanceof FloatProcessor) fpixels = (float[]) ip.getPixels(); width = ip.getWidth(); height = ip.getHeight(); }
void Bernsen(ImagePlus imp, int radius, double par1, double par2, boolean doIwhite) { // Bernsen recommends WIN_SIZE = 31 and CONTRAST_THRESHOLD = 15. // 1) Bernsen J. (1986) "Dynamic Thresholding of Grey-Level Images" // Proc. of the 8th Int. Conf. on Pattern Recognition, pp. 1251-1255 // 2) Sezgin M. and Sankur B. (2004) "Survey over Image Thresholding // Techniques and Quantitative Performance Evaluation" Journal of // Electronic Imaging, 13(1): 146-165 // http://citeseer.ist.psu.edu/sezgin04survey.html // Ported to ImageJ plugin from E Celebi's fourier_0.8 routines // This version uses a circular local window, instead of a rectagular one ImagePlus Maximp, Minimp; ImageProcessor ip = imp.getProcessor(), ipMax, ipMin; int contrast_threshold = 15; int local_contrast; int mid_gray; byte object; byte backg; int temp; if (par1 != 0) { IJ.log("Bernsen: changed contrast_threshold from :" + contrast_threshold + " to:" + par1); contrast_threshold = (int) par1; } if (doIwhite) { object = (byte) 0xff; backg = (byte) 0; } else { object = (byte) 0; backg = (byte) 0xff; } Maximp = duplicateImage(ip); ipMax = Maximp.getProcessor(); RankFilters rf = new RankFilters(); rf.rank(ipMax, radius, rf.MAX); // Maximum // Maximp.show(); Minimp = duplicateImage(ip); ipMin = Minimp.getProcessor(); rf.rank(ipMin, radius, rf.MIN); // Minimum // Minimp.show(); byte[] pixels = (byte[]) ip.getPixels(); byte[] max = (byte[]) ipMax.getPixels(); byte[] min = (byte[]) ipMin.getPixels(); for (int i = 0; i < pixels.length; i++) { local_contrast = (int) ((max[i] & 0xff) - (min[i] & 0xff)); mid_gray = (int) ((min[i] & 0xff) + (max[i] & 0xff)) / 2; temp = (int) (pixels[i] & 0x0000ff); if (local_contrast < contrast_threshold) pixels[i] = (mid_gray >= 128) ? object : backg; // Low contrast region else pixels[i] = (temp >= mid_gray) ? object : backg; } // imp.updateAndDraw(); return; }
void getCentroid(ImageProcessor ip, int minThreshold, int maxThreshold) { byte[] pixels = (byte[]) ip.getPixels(); byte[] mask = ip.getMaskArray(); boolean limit = minThreshold > 0 || maxThreshold < 255; double xsum = 0, ysum = 0; int count = 0, i, mi, v; for (int y = ry, my = 0; y < (ry + rh); y++, my++) { i = y * width + rx; mi = my * rw; for (int x = rx; x < (rx + rw); x++) { if (mask == null || mask[mi++] != 0) { if (limit) { v = pixels[i] & 255; if (v >= minThreshold && v <= maxThreshold) { count++; xsum += x; ysum += y; } } else { count++; xsum += x; ysum += y; } } i++; } } xCentroid = xsum / count + 0.5; yCentroid = ysum / count + 0.5; if (cal != null) { xCentroid = cal.getX(xCentroid); yCentroid = cal.getY(yCentroid, height); } }
/*------------------------------------------------------------------*/ void putRow(ImageProcessor ip, int y, double[] row) { int rowLength = ip.getWidth(); if (rowLength != row.length) { throw new IndexOutOfBoundsException("Incoherent array sizes"); } y *= rowLength; if (ip.getPixels() instanceof float[]) { float[] floatPixels = (float[]) ip.getPixels(); for (int i = 0; (i < rowLength); i++) { floatPixels[y++] = (float) row[i]; } } else { throw new IllegalArgumentException("Float image required"); } } /* end putRow */
/*------------------------------------------------------------------*/ void putColumn(ImageProcessor ip, int x, double[] column) { int width = ip.getWidth(); if (ip.getHeight() != column.length) { throw new IndexOutOfBoundsException("Incoherent array sizes"); } if (ip.getPixels() instanceof float[]) { float[] floatPixels = (float[]) ip.getPixels(); for (int i = 0; (i < column.length); i++) { floatPixels[x] = (float) column[i]; x += width; } } else { throw new IllegalArgumentException("Float image required"); } } /* end putColumn */
void reset(ImagePlus imp, ImageProcessor ip) { // Assign the pixels of ip to the data in the restore array, while // taking care to not give the address the restore array to the // image processor. int[] pixels = (int[]) ip.getPixels(); for (int i = 0; i < numPixels; i++) pixels[i] = restore[i]; }
void Contrast(ImagePlus imp, int radius, double par1, double par2, boolean doIwhite) { // G. Landini, 2013 // Based on a simple contrast toggle. This procedure does not have user-provided paramters other // than the kernel radius // Sets the pixel value to either white or black depending on whether its current value is // closest to the local Max or Min respectively // The procedure is similar to Toggle Contrast Enhancement (see Soille, Morphological Image // Analysis (2004), p. 259 ImagePlus Maximp, Minimp; ImageProcessor ip = imp.getProcessor(), ipMax, ipMin; int c_value = 0; int mid_gray; byte object; byte backg; if (doIwhite) { object = (byte) 0xff; backg = (byte) 0; } else { object = (byte) 0; backg = (byte) 0xff; } Maximp = duplicateImage(ip); ipMax = Maximp.getProcessor(); RankFilters rf = new RankFilters(); rf.rank(ipMax, radius, rf.MAX); // Maximum // Maximp.show(); Minimp = duplicateImage(ip); ipMin = Minimp.getProcessor(); rf.rank(ipMin, radius, rf.MIN); // Minimum // Minimp.show(); byte[] pixels = (byte[]) ip.getPixels(); byte[] max = (byte[]) ipMax.getPixels(); byte[] min = (byte[]) ipMin.getPixels(); for (int i = 0; i < pixels.length; i++) { pixels[i] = ((Math.abs((int) (max[i] & 0xff - pixels[i] & 0xff)) <= Math.abs((int) (pixels[i] & 0xff - min[i] & 0xff)))) ? object : backg; } // imp.updateAndDraw(); return; }
void MidGrey(ImagePlus imp, int radius, double par1, double par2, boolean doIwhite) { // See: Image Processing Learning Resourches HIPR2 // http://homepages.inf.ed.ac.uk/rbf/HIPR2/adpthrsh.htm ImagePlus Maximp, Minimp; ImageProcessor ip = imp.getProcessor(), ipMax, ipMin; int c_value = 0; int mid_gray; byte object; byte backg; if (par1 != 0) { IJ.log("MidGrey: changed c_value from :" + c_value + " to:" + par1); c_value = (int) par1; } if (doIwhite) { object = (byte) 0xff; backg = (byte) 0; } else { object = (byte) 0; backg = (byte) 0xff; } Maximp = duplicateImage(ip); ipMax = Maximp.getProcessor(); RankFilters rf = new RankFilters(); rf.rank(ipMax, radius, rf.MAX); // Maximum // Maximp.show(); Minimp = duplicateImage(ip); ipMin = Minimp.getProcessor(); rf.rank(ipMin, radius, rf.MIN); // Minimum // Minimp.show(); byte[] pixels = (byte[]) ip.getPixels(); byte[] max = (byte[]) ipMax.getPixels(); byte[] min = (byte[]) ipMin.getPixels(); for (int i = 0; i < pixels.length; i++) { pixels[i] = ((int) (pixels[i] & 0xff) > (int) (((max[i] & 0xff) + (min[i] & 0xff)) / 2) - c_value) ? object : backg; } // imp.updateAndDraw(); return; }
/*------------------------------------------------------------------*/ public void getHorizontalGradient(ImageProcessor ip, double tolerance) { if (!(ip.getPixels() instanceof float[])) { throw new IllegalArgumentException("Float image required"); } float[] floatPixels = (float[]) ip.getPixels(); int width = ip.getWidth(); int height = ip.getHeight(); double line[] = new double[width]; for (int y = 0; (y < height); y++) { getRow(ip, y, line); getSplineInterpolationCoefficients(line, tolerance); getGradient(line); putRow(ip, y, line); stepProgressBar(); } } /* end getHorizontalGradient */
/*------------------------------------------------------------------*/ public void getVerticalHessian(ImageProcessor ip, double tolerance) { if (!(ip.getPixels() instanceof float[])) { throw new IllegalArgumentException("Float image required"); } float[] floatPixels = (float[]) ip.getPixels(); int width = ip.getWidth(); int height = ip.getHeight(); double line[] = new double[height]; for (int x = 0; (x < width); x++) { getColumn(ip, x, line); getSplineInterpolationCoefficients(line, tolerance); getHessian(line); putColumn(ip, x, line); stepProgressBar(); } } /* end getVerticalHessian */
/** Adds the image in 'ip' to the end of the stack. */ public void addSlice(String sliceLabel, ImageProcessor ip) { if (ip.getWidth() != width || ip.getHeight() != height) throw new IllegalArgumentException("Dimensions do not match"); if (nSlices == 0) { cm = ip.getColorModel(); min = ip.getMin(); max = ip.getMax(); } addSlice(sliceLabel, ip.getPixels()); }
void Mean(ImagePlus imp, int radius, double par1, double par2, boolean doIwhite) { // See: Image Processing Learning Resourches HIPR2 // http://homepages.inf.ed.ac.uk/rbf/HIPR2/adpthrsh.htm ImagePlus Meanimp; ImageProcessor ip = imp.getProcessor(), ipMean; int c_value = 0; byte object; byte backg; if (par1 != 0) { IJ.log("Mean: changed c_value from :" + c_value + " to:" + par1); c_value = (int) par1; } if (doIwhite) { object = (byte) 0xff; backg = (byte) 0; } else { object = (byte) 0; backg = (byte) 0xff; } Meanimp = duplicateImage(ip); ImageConverter ic = new ImageConverter(Meanimp); ic.convertToGray32(); ipMean = Meanimp.getProcessor(); RankFilters rf = new RankFilters(); rf.rank(ipMean, radius, rf.MEAN); // Mean // Meanimp.show(); byte[] pixels = (byte[]) ip.getPixels(); float[] mean = (float[]) ipMean.getPixels(); for (int i = 0; i < pixels.length; i++) pixels[i] = ((int) (pixels[i] & 0xff) > (int) (mean[i] - c_value)) ? object : backg; // imp.updateAndDraw(); return; }
// Binary fill by Gabriel Landini, G.Landini at bham.ac.uk // 21/May/2008 void fill(ImageProcessor ip, int foreground, int background) { int width = ip.getWidth(); int height = ip.getHeight(); FloodFiller ff = new FloodFiller(ip); ip.setColor(127); for (int y = 0; y < height; y++) { if (ip.getPixel(0, y) == background) ff.fill(0, y); if (ip.getPixel(width - 1, y) == background) ff.fill(width - 1, y); } for (int x = 0; x < width; x++) { if (ip.getPixel(x, 0) == background) ff.fill(x, 0); if (ip.getPixel(x, height - 1) == background) ff.fill(x, height - 1); } byte[] pixels = (byte[]) ip.getPixels(); int n = width * height; for (int i = 0; i < n; i++) { if (pixels[i] == 127) pixels[i] = (byte) background; else pixels[i] = (byte) foreground; } }
void calculateMoments(ImageProcessor ip, int minThreshold, int maxThreshold, float[] cTable) { byte[] pixels = (byte[]) ip.getPixels(); byte[] mask = ip.getMaskArray(); int v, i, mi; double dv, dv2, sum1 = 0.0, sum2 = 0.0, sum3 = 0.0, sum4 = 0.0, xsum = 0.0, ysum = 0.0; for (int y = ry, my = 0; y < (ry + rh); y++, my++) { i = y * width + rx; mi = my * rw; for (int x = rx; x < (rx + rw); x++) { if (mask == null || mask[mi++] != 0) { v = pixels[i] & 255; if (v >= minThreshold && v <= maxThreshold) { dv = ((cTable != null) ? cTable[v] : v) + Double.MIN_VALUE; dv2 = dv * dv; sum1 += dv; sum2 += dv2; sum3 += dv * dv2; sum4 += dv2 * dv2; xsum += x * dv; ysum += y * dv; } } i++; } } double mean2 = mean * mean; double variance = sum2 / pixelCount - mean2; double sDeviation = Math.sqrt(variance); skewness = ((sum3 - 3.0 * mean * sum2) / pixelCount + 2.0 * mean * mean2) / (variance * sDeviation); kurtosis = (((sum4 - 4.0 * mean * sum3 + 6.0 * mean2 * sum2) / pixelCount - 3.0 * mean2 * mean2) / (variance * variance) - 3.0); xCenterOfMass = xsum / sum1 + 0.5; yCenterOfMass = ysum / sum1 + 0.5; if (cal != null) { xCenterOfMass = cal.getX(xCenterOfMass); yCenterOfMass = cal.getY(yCenterOfMass, height); } }
public ImageProcessor getMask() { if (cachedMask != null && cachedMask.getPixels() != null) return cachedMask; ImageProcessor mask = new ByteProcessor(width, height); double a = width / 2.0, b = height / 2.0; double a2 = a * a, b2 = b * b; a -= 0.5; b -= 0.5; double xx, yy; int offset; byte[] pixels = (byte[]) mask.getPixels(); for (int y = 0; y < height; y++) { offset = y * width; for (int x = 0; x < width; x++) { xx = x - a; yy = y - b; if ((xx * xx / a2 + yy * yy / b2) <= 1.0) pixels[offset + x] = -1; } } cachedMask = mask; return mask; }
int[] readJPEG(InputStream in) throws IOException { BufferedImage bi = ImageIO.read(in); ImageProcessor ip = new ColorProcessor(bi); return (int[]) ip.getPixels(); }
/** * LocalThicknesstoCleanedUpLocalThickness * * <p>Input: 3D Local Thickness map (32-bit stack) * * <p>Output: Same as input with border voxels corrected for "jaggies." Non-background voxels * adjacent to background voxels are have their local thickness values replaced by the average of * their non-background neighbors that do not border background points. Bob Dougherty August 1, * 2007 * * <ul> * <li>August 10. Version 3 This version also multiplies the local thickness by 2 to conform * with the official definition of local thickness. * </ul> */ private ImagePlus localThicknesstoCleanedUpLocalThickness(ImagePlus imp, float[][] s) { final int w = imp.getWidth(); final int h = imp.getHeight(); final int d = imp.getStackSize(); IJ.showStatus("Cleaning up local thickness..."); // Create 32 bit floating point stack for output, sNew. ImageStack newStack = new ImageStack(w, h); sNew = new float[d][]; for (int k = 0; k < d; k++) { ImageProcessor ipk = new FloatProcessor(w, h); newStack.addSlice(null, ipk); sNew[k] = (float[]) ipk.getPixels(); } /* * First set the output array to flags: 0 for a background point -1 for * a non-background point that borders a background point s (input data) * for an interior non-background point */ for (int k = 0; k < d; k++) { for (int j = 0; j < h; j++) { final int wj = w * j; for (int i = 0; i < w; i++) { sNew[k][i + wj] = setFlag(s, i, j, k, w, h, d); } // i } // j } // k /* * Process the surface points. Initially set results to negative values * to be able to avoid including them in averages of for subsequent * points. During the calculation, positive values in sNew are interior * non-background local thicknesses. Negative values are surface points. * In this case the value might be -1 (not processed yet) or -result, * where result is the average of the neighboring interior points. * Negative values are excluded from the averaging. */ for (int k = 0; k < d; k++) { for (int j = 0; j < h; j++) { final int wj = w * j; for (int i = 0; i < w; i++) { final int ind = i + wj; if (sNew[k][ind] == -1) { sNew[k][ind] = -averageInteriorNeighbors(s, i, j, k, w, h, d); } } // i } // j } // k // Fix the negative values and double the results for (int k = 0; k < d; k++) { for (int j = 0; j < h; j++) { final int wj = w * j; for (int i = 0; i < w; i++) { final int ind = i + wj; sNew[k][ind] = (float) Math.abs(sNew[k][ind]); } // i } // j } // k IJ.showStatus("Clean Up Local Thickness complete"); String title = stripExtension(imp.getTitle()); ImagePlus impOut = new ImagePlus(title + "_CL", newStack); final double vW = imp.getCalibration().pixelWidth; // calibrate the pixel values to pixel width // so that thicknesses represent real units (not pixels) for (int z = 0; z < d; z++) { impOut.setSlice(z + 1); impOut.getProcessor().multiply(vW); } return impOut; }
/** * DistanceMaptoDistanceRidge * * <p>Output: Distance ridge resulting from a local scan of the distance map. Overwrites the * input. * * <p>Note: Non-background points that are not part of the distance ridge are assiged a * VERY_SMALL_VALUE. This is used for subsequent processing by other plugins to find the local * thickness. Bob Dougherty August 10, 2006 * * <ul> * <li>Version 1: August 10-11, 2006. Subtracts 0.5 from the distances. * <li>Version 1.01: September 6, 2006. Corrected some typos in the comments. * <li>Version 1.01: Sept. 7, 2006. More tiny edits. * <li>Version 2: Sept. 25, 2006. Creates a separate image stack for symmetry. <br> * Temporary version that is very conservative. <br> * Admittedly does not produce much impovement on real images. * <li>Version 3: Sept. 30, 2006. Ball calculations based on grid points. Should be much more * accurate. * <li>Version 3.1 Oct. 1, 2006. Faster scanning of search points. * </ul> * * @param imp 3D Distance map (32-bit stack) */ private void distanceMaptoDistanceRidge(ImagePlus imp, float[][] s) { final int w = imp.getWidth(); final int h = imp.getHeight(); final int d = imp.getStackSize(); sNew = new float[d][]; for (int k = 0; k < d; k++) { ImageProcessor ipk = new FloatProcessor(w, h); sNew[k] = (float[]) ipk.getPixels(); } // Do it int k1, j1, i1, dz, dy, dx; boolean notRidgePoint; float[] sk1; float[] sk, skNew; int sk0Sq, sk0SqInd, sk1Sq; // Find the largest distance in the data IJ.showStatus("Distance Ridge: scanning the data"); float distMax = 0; for (int k = 0; k < d; k++) { sk = s[k]; for (int j = 0; j < h; j++) { final int wj = w * j; for (int i = 0; i < w; i++) { final int ind = i + wj; if (sk[ind] > distMax) distMax = sk[ind]; } } } int rSqMax = (int) (distMax * distMax + 0.5f) + 1; boolean[] occurs = new boolean[rSqMax]; for (int i = 0; i < rSqMax; i++) occurs[i] = false; for (int k = 0; k < d; k++) { sk = s[k]; for (int j = 0; j < h; j++) { final int wj = w * j; for (int i = 0; i < w; i++) { final int ind = i + wj; occurs[(int) (sk[ind] * sk[ind] + 0.5f)] = true; } } } int numRadii = 0; for (int i = 0; i < rSqMax; i++) { if (occurs[i]) numRadii++; } // Make an index of the distance-squared values int[] distSqIndex = new int[rSqMax]; int[] distSqValues = new int[numRadii]; int indDS = 0; for (int i = 0; i < rSqMax; i++) { if (occurs[i]) { distSqIndex[i] = indDS; distSqValues[indDS++] = i; } } /* * Build template The first index of the template is the number of * nonzero components in the offest from the test point to the remote * point. The second index is the radii index (of the test point). The * value of the template is the minimum square radius of the remote * point required to cover the ball of the test point. */ IJ.showStatus("Distance Ridge: creating search templates"); int[][] rSqTemplate = createTemplate(distSqValues); int numCompZ, numCompY, numCompX, numComp; for (int k = 0; k < d; k++) { IJ.showStatus("Distance Ridge: processing slice " + (k + 1) + "/" + d); // IJ.showProgress(k/(1.*d)); sk = s[k]; skNew = sNew[k]; for (int j = 0; j < h; j++) { final int wj = w * j; for (int i = 0; i < w; i++) { final int ind = i + wj; if (sk[ind] > 0) { notRidgePoint = false; sk0Sq = (int) (sk[ind] * sk[ind] + 0.5f); sk0SqInd = distSqIndex[sk0Sq]; for (dz = -1; dz <= 1; dz++) { k1 = k + dz; if ((k1 >= 0) && (k1 < d)) { sk1 = s[k1]; if (dz == 0) { numCompZ = 0; } else { numCompZ = 1; } for (dy = -1; dy <= 1; dy++) { j1 = j + dy; final int wj1 = w * j1; if ((j1 >= 0) && (j1 < h)) { if (dy == 0) { numCompY = 0; } else { numCompY = 1; } for (dx = -1; dx <= 1; dx++) { i1 = i + dx; if ((i1 >= 0) && (i1 < w)) { if (dx == 0) { numCompX = 0; } else { numCompX = 1; } numComp = numCompX + numCompY + numCompZ; if (numComp > 0) { final float sk1i1wj1 = sk1[i1 + wj1]; sk1Sq = (int) (sk1i1wj1 * sk1i1wj1 + 0.5f); if (sk1Sq >= rSqTemplate[numComp - 1][sk0SqInd]) notRidgePoint = true; } } // if in grid for i1 if (notRidgePoint) break; } // dx } // if in grid for j1 if (notRidgePoint) break; } // dy } // if in grid for k1 if (notRidgePoint) break; } // dz if (!notRidgePoint) skNew[ind] = sk[ind]; } // if not in background } // i } // j } // k IJ.showStatus("Distance Ridge complete"); // replace work array s with result of the method, sNew s = sNew; }
/** * Saito-Toriwaki algorithm for Euclidian Distance Transformation. Direct application of Algorithm * 1. Bob Dougherty 8/8/2006 * * <ul> * <li>Version S1A: lower memory usage. * <li>Version S1A.1 A fixed indexing bug for 666-bin data set * <li>Version S1A.2 Aug. 9, 2006. Changed noResult value. * <li>Version S1B Aug. 9, 2006. Faster. * <li>Version S1B.1 Sept. 6, 2006. Changed comments. * <li>Version S1C Oct. 1, 2006. Option for inverse case. <br> * Fixed inverse behavior in y and z directions. * <li>Version D July 30, 2007. Multithread processing for step 2. * </ul> * * <p>This version assumes the input stack is already in memory, 8-bit, and outputs to a new * 32-bit stack. Versions that are more stingy with memory may be forthcoming. * * @param imp 8-bit (binary) ImagePlus */ private float[][] geometryToDistanceMap(ImagePlus imp, boolean inv) { final int w = imp.getWidth(); final int h = imp.getHeight(); final int d = imp.getStackSize(); int nThreads = Runtime.getRuntime().availableProcessors(); // Create references to input data ImageStack stack = imp.getStack(); byte[][] data = new byte[d][]; for (int k = 0; k < d; k++) data[k] = (byte[]) stack.getPixels(k + 1); // Create 32 bit floating point stack for output, s. Will also use it // for g in Transformation 1. float[][] s = new float[d][]; for (int k = 0; k < d; k++) { ImageProcessor ipk = new FloatProcessor(w, h); s[k] = (float[]) ipk.getPixels(); } float[] sk; // Transformation 1. Use s to store g. IJ.showStatus("EDT transformation 1/3"); Step1Thread[] s1t = new Step1Thread[nThreads]; for (int thread = 0; thread < nThreads; thread++) { s1t[thread] = new Step1Thread(thread, nThreads, w, h, d, inv, s, data); s1t[thread].start(); } try { for (int thread = 0; thread < nThreads; thread++) { s1t[thread].join(); } } catch (InterruptedException ie) { IJ.error("A thread was interrupted in step 1 ."); } // Transformation 2. g (in s) -> h (in s) IJ.showStatus("EDT transformation 2/3"); Step2Thread[] s2t = new Step2Thread[nThreads]; for (int thread = 0; thread < nThreads; thread++) { s2t[thread] = new Step2Thread(thread, nThreads, w, h, d, s); s2t[thread].start(); } try { for (int thread = 0; thread < nThreads; thread++) { s2t[thread].join(); } } catch (InterruptedException ie) { IJ.error("A thread was interrupted in step 2 ."); } // Transformation 3. h (in s) -> s IJ.showStatus("EDT transformation 3/3"); Step3Thread[] s3t = new Step3Thread[nThreads]; for (int thread = 0; thread < nThreads; thread++) { s3t[thread] = new Step3Thread(thread, nThreads, w, h, d, inv, s, data); s3t[thread].start(); } try { for (int thread = 0; thread < nThreads; thread++) { s3t[thread].join(); } } catch (InterruptedException ie) { IJ.error("A thread was interrupted in step 3 ."); } // Find the largest distance for scaling // Also fill in the background values. float distMax = 0; final int wh = w * h; float dist; for (int k = 0; k < d; k++) { sk = s[k]; for (int ind = 0; ind < wh; ind++) { if (((data[k][ind] & 255) < 128) ^ inv) { sk[ind] = 0; } else { dist = (float) Math.sqrt(sk[ind]); sk[ind] = dist; distMax = (dist > distMax) ? dist : distMax; } } } IJ.showProgress(1.0); IJ.showStatus("Done"); return s; }
/** * Performs particle analysis on the specified ImagePlus and ImageProcessor. Returns false if * there is an error. */ public boolean analyze(ImagePlus imp, ImageProcessor ip) { if (this.imp == null) this.imp = imp; showResults = (options & SHOW_RESULTS) != 0; excludeEdgeParticles = (options & EXCLUDE_EDGE_PARTICLES) != 0; resetCounter = (options & CLEAR_WORKSHEET) != 0; showProgress = (options & SHOW_PROGRESS) != 0; floodFill = (options & INCLUDE_HOLES) == 0; recordStarts = (options & RECORD_STARTS) != 0; addToManager = (options & ADD_TO_MANAGER) != 0; displaySummary = (options & DISPLAY_SUMMARY) != 0; inSituShow = (options & IN_SITU_SHOW) != 0; outputImage = null; ip.snapshot(); ip.setProgressBar(null); if (Analyzer.isRedirectImage()) { redirectImp = Analyzer.getRedirectImage(imp); if (redirectImp == null) return false; int depth = redirectImp.getStackSize(); if (depth > 1 && depth == imp.getStackSize()) { ImageStack redirectStack = redirectImp.getStack(); redirectIP = redirectStack.getProcessor(imp.getCurrentSlice()); } else redirectIP = redirectImp.getProcessor(); } else if (imp.getType() == ImagePlus.COLOR_RGB) { ImagePlus original = (ImagePlus) imp.getProperty("OriginalImage"); if (original != null && original.getWidth() == imp.getWidth() && original.getHeight() == imp.getHeight()) { redirectImp = original; redirectIP = original.getProcessor(); } } if (!setThresholdLevels(imp, ip)) return false; width = ip.getWidth(); height = ip.getHeight(); if (!(showChoice == NOTHING || showChoice == OVERLAY_OUTLINES || showChoice == OVERLAY_MASKS)) { blackBackground = Prefs.blackBackground && inSituShow; if (slice == 1) outlines = new ImageStack(width, height); if (showChoice == ROI_MASKS) drawIP = new ShortProcessor(width, height); else drawIP = new ByteProcessor(width, height); drawIP.setLineWidth(lineWidth); if (showChoice == ROI_MASKS) { } // Place holder for now... else if (showChoice == MASKS && !blackBackground) drawIP.invertLut(); else if (showChoice == OUTLINES) { if (!inSituShow) { if (customLut == null) makeCustomLut(); drawIP.setColorModel(customLut); } drawIP.setFont(new Font("SansSerif", Font.PLAIN, fontSize)); if (fontSize > 12 && inSituShow) drawIP.setAntialiasedText(true); } outlines.addSlice(null, drawIP); if (showChoice == ROI_MASKS || blackBackground) { drawIP.setColor(Color.black); drawIP.fill(); drawIP.setColor(Color.white); } else { drawIP.setColor(Color.white); drawIP.fill(); drawIP.setColor(Color.black); } } calibration = redirectImp != null ? redirectImp.getCalibration() : imp.getCalibration(); if (rt == null) { rt = Analyzer.getResultsTable(); analyzer = new Analyzer(imp); } else analyzer = new Analyzer(imp, measurements, rt); if (resetCounter && slice == 1) { if (!Analyzer.resetCounter()) return false; } beginningCount = Analyzer.getCounter(); byte[] pixels = null; if (ip instanceof ByteProcessor) pixels = (byte[]) ip.getPixels(); if (r == null) { r = ip.getRoi(); mask = ip.getMask(); if (displaySummary) { if (mask != null) totalArea = ImageStatistics.getStatistics(ip, AREA, calibration).area; else totalArea = r.width * calibration.pixelWidth * r.height * calibration.pixelHeight; } } minX = r.x; maxX = r.x + r.width; minY = r.y; maxY = r.y + r.height; if (r.width < width || r.height < height || mask != null) { if (!eraseOutsideRoi(ip, r, mask)) return false; } int offset; double value; int inc = Math.max(r.height / 25, 1); int mi = 0; ImageWindow win = imp.getWindow(); if (win != null) win.running = true; if (measurements == 0) measurements = Analyzer.getMeasurements(); if (showChoice == ELLIPSES) measurements |= ELLIPSE; measurements &= ~LIMIT; // ignore "Limit to Threshold" roiNeedsImage = (measurements & PERIMETER) != 0 || (measurements & SHAPE_DESCRIPTORS) != 0 || (measurements & FERET) != 0; particleCount = 0; wand = new Wand(ip); pf = new PolygonFiller(); if (floodFill) { ImageProcessor ipf = ip.duplicate(); ipf.setValue(fillColor); ff = new FloodFiller(ipf); } roiType = Wand.allPoints() ? Roi.FREEROI : Roi.TRACED_ROI; for (int y = r.y; y < (r.y + r.height); y++) { offset = y * width; for (int x = r.x; x < (r.x + r.width); x++) { if (pixels != null) value = pixels[offset + x] & 255; else if (imageType == SHORT) value = ip.getPixel(x, y); else value = ip.getPixelValue(x, y); if (value >= level1 && value <= level2) analyzeParticle(x, y, imp, ip); } if (showProgress && ((y % inc) == 0)) IJ.showProgress((double) (y - r.y) / r.height); if (win != null) canceled = !win.running; if (canceled) { Macro.abort(); break; } } if (showProgress) IJ.showProgress(1.0); if (showResults) rt.updateResults(); imp.killRoi(); ip.resetRoi(); ip.reset(); if (displaySummary && IJ.getInstance() != null) updateSliceSummary(); if (addToManager && roiManager != null) roiManager.setEditMode(imp, true); maxParticleCount = (particleCount > maxParticleCount) ? particleCount : maxParticleCount; totalCount += particleCount; if (!canceled) showResults(); return true; }
void Sauvola(ImagePlus imp, int radius, double par1, double par2, boolean doIwhite) { // Sauvola recommends K_VALUE = 0.5 and R_VALUE = 128. // This is a modification of Niblack's thresholding method. // Sauvola J. and Pietaksinen M. (2000) "Adaptive Document Image Binarization" // Pattern Recognition, 33(2): 225-236 // http://www.ee.oulu.fi/mvg/publications/show_pdf.php?ID=24 // Ported to ImageJ plugin from E Celebi's fourier_0.8 routines // This version uses a circular local window, instead of a rectagular one ImagePlus Meanimp, Varimp; ImageProcessor ip = imp.getProcessor(), ipMean, ipVar; double k_value = 0.5; double r_value = 128; byte object; byte backg; if (par1 != 0) { IJ.log("Sauvola: changed k_value from :" + k_value + " to:" + par1); k_value = par1; } if (par2 != 0) { IJ.log("Sauvola: changed r_value from :" + r_value + " to:" + par2); r_value = par2; } if (doIwhite) { object = (byte) 0xff; backg = (byte) 0; } else { object = (byte) 0; backg = (byte) 0xff; } Meanimp = duplicateImage(ip); ImageConverter ic = new ImageConverter(Meanimp); ic.convertToGray32(); ipMean = Meanimp.getProcessor(); RankFilters rf = new RankFilters(); rf.rank(ipMean, radius, rf.MEAN); // Mean // Meanimp.show(); Varimp = duplicateImage(ip); ic = new ImageConverter(Varimp); ic.convertToGray32(); ipVar = Varimp.getProcessor(); rf.rank(ipVar, radius, rf.VARIANCE); // Variance // Varimp.show(); byte[] pixels = (byte[]) ip.getPixels(); float[] mean = (float[]) ipMean.getPixels(); float[] var = (float[]) ipVar.getPixels(); for (int i = 0; i < pixels.length; i++) pixels[i] = ((int) (pixels[i] & 0xff) > (int) (mean[i] * (1.0 + k_value * ((Math.sqrt(var[i]) / r_value) - 1.0)))) ? object : backg; // imp.updateAndDraw(); return; }
void Phansalkar(ImagePlus imp, int radius, double par1, double par2, boolean doIwhite) { // This is a modification of Sauvola's thresholding method to deal with low contrast images. // Phansalskar N. et al. Adaptive local thresholding for detection of nuclei in diversity // stained // cytology images.International Conference on Communications and Signal Processing (ICCSP), // 2011, // 218 - 220. // In this method, the threshold t = mean*(1+p*exp(-q*mean)+k*((stdev/r)-1)) // Phansalkar recommends k = 0.25, r = 0.5, p = 2 and q = 10. In this plugin, k and r are the // parameters 1 and 2 respectively, but the values of p and q are fixed. // // Implemented from Phansalkar's paper description by G. Landini // This version uses a circular local window, instead of a rectagular one ImagePlus Meanimp, Varimp, Orimp; ImageProcessor ip = imp.getProcessor(), ipMean, ipVar, ipOri; double k_value = 0.25; double r_value = 0.5; double p_value = 2.0; double q_value = 10.0; byte object; byte backg; if (par1 != 0) { IJ.log("Phansalkar: changed k_value from :" + k_value + " to:" + par1); k_value = par1; } if (par2 != 0) { IJ.log("Phansalkar: changed r_value from :" + r_value + " to:" + par2); r_value = par2; } if (doIwhite) { object = (byte) 0xff; backg = (byte) 0; } else { object = (byte) 0; backg = (byte) 0xff; } Meanimp = duplicateImage(ip); ContrastEnhancer ce = new ContrastEnhancer(); ce.stretchHistogram(Meanimp, 0.0); ImageConverter ic = new ImageConverter(Meanimp); ic.convertToGray32(); ipMean = Meanimp.getProcessor(); ipMean.multiply(1.0 / 255); Orimp = duplicateImage(ip); ce.stretchHistogram(Orimp, 0.0); ic = new ImageConverter(Orimp); ic.convertToGray32(); ipOri = Orimp.getProcessor(); ipOri.multiply(1.0 / 255); // original to compare // Orimp.show(); RankFilters rf = new RankFilters(); rf.rank(ipMean, radius, rf.MEAN); // Mean // Meanimp.show(); Varimp = duplicateImage(ip); ce.stretchHistogram(Varimp, 0.0); ic = new ImageConverter(Varimp); ic.convertToGray32(); ipVar = Varimp.getProcessor(); ipVar.multiply(1.0 / 255); rf.rank(ipVar, radius, rf.VARIANCE); // Variance ipVar.sqr(); // SD // Varimp.show(); byte[] pixels = (byte[]) ip.getPixels(); float[] ori = (float[]) ipOri.getPixels(); float[] mean = (float[]) ipMean.getPixels(); float[] sd = (float[]) ipVar.getPixels(); for (int i = 0; i < pixels.length; i++) pixels[i] = ((ori[i]) > (mean[i] * (1.0 + p_value * Math.exp(-q_value * mean[i]) + k_value * ((sd[i] / r_value) - 1.0)))) ? object : backg; // imp.updateAndDraw(); return; }
void Otsu(ImagePlus imp, int radius, double par1, double par2, boolean doIwhite) { // Otsu's threshold algorithm // C++ code by Jordan Bevik <*****@*****.**> // ported to ImageJ plugin by G.Landini. Same algorithm as in Auto_Threshold, this time on local // circular regions int[] data; int w = imp.getWidth(); int h = imp.getHeight(); int position; int radiusx2 = radius * 2; ImageProcessor ip = imp.getProcessor(); byte[] pixels = (byte[]) ip.getPixels(); byte[] pixelsOut = new byte [pixels.length]; // need this to avoid changing the image data (and further histograms) byte object; byte backg; if (doIwhite) { object = (byte) 0xff; backg = (byte) 0; } else { object = (byte) 0; backg = (byte) 0xff; } int k, kStar; // k = the current threshold; kStar = optimal threshold int N1, N; // N1 = # points with intensity <=k; N = total number of points double BCV, BCVmax; // The current Between Class Variance and maximum BCV double num, denom; // temporary bookeeping int Sk; // The total intensity for all histogram points <=k int S, L = 256; // The total intensity of the image. Need to hange here if modifying for >8 bits // images int roiy; Roi roi = new OvalRoi(0, 0, radiusx2, radiusx2); // ip.setRoi(roi); for (int y = 0; y < h; y++) { IJ.showProgress( (double) (y) / (h - 1)); // this method is slow, so let's show the progress bar roiy = y - radius; for (int x = 0; x < w; x++) { roi.setLocation(x - radius, roiy); ip.setRoi(roi); // ip.setRoi(new OvalRoi(x-radius, roiy, radiusx2, radiusx2)); position = x + y * w; data = ip.getHistogram(); // Initialize values: S = N = 0; for (k = 0; k < L; k++) { S += k * data[k]; // Total histogram intensity N += data[k]; // Total number of data points } Sk = 0; N1 = data[0]; // The entry for zero intensity BCV = 0; BCVmax = 0; kStar = 0; // Look at each possible threshold value, // calculate the between-class variance, and decide if it's a max for (k = 1; k < L - 1; k++) { // No need to check endpoints k = 0 or k = L-1 Sk += k * data[k]; N1 += data[k]; // The float casting here is to avoid compiler warning about loss of precision and // will prevent overflow in the case of large saturated images denom = (double) (N1) * (N - N1); // Maximum value of denom is (N^2)/4 = approx. 3E10 if (denom != 0) { // Float here is to avoid loss of precision when dividing num = ((double) N1 / N) * S - Sk; // Maximum value of num = 255*N = approx 8E7 BCV = (num * num) / denom; } else BCV = 0; if (BCV >= BCVmax) { // Assign the best threshold found so far BCVmax = BCV; kStar = k; } } // kStar += 1; // Use QTI convention that intensity -> 1 if intensity >= k // (the algorithm was developed for I-> 1 if I <= k.) // return kStar; pixelsOut[position] = ((int) (pixels[position] & 0xff) > kStar) ? object : backg; } } for (position = 0; position < w * h; position++) pixels[position] = pixelsOut[position]; // update with thresholded pixels }
void Niblack(ImagePlus imp, int radius, double par1, double par2, boolean doIwhite) { // Niblack recommends K_VALUE = -0.2 for images with black foreground // objects, and K_VALUE = +0.2 for images with white foreground objects. // Niblack W. (1986) "An introduction to Digital Image Processing" Prentice-Hall. // Ported to ImageJ plugin from E Celebi's fourier_0.8 routines // This version uses a circular local window, instead of a rectagular one ImagePlus Meanimp, Varimp; ImageProcessor ip = imp.getProcessor(), ipMean, ipVar; double k_value; int c_value = 0; byte object; byte backg; if (doIwhite) { k_value = 0.2; object = (byte) 0xff; backg = (byte) 0; } else { k_value = -0.2; object = (byte) 0; backg = (byte) 0xff; } if (par1 != 0) { IJ.log("Niblack: changed k_value from :" + k_value + " to:" + par1); k_value = par1; } if (par2 != 0) { IJ.log( "Niblack: changed c_value from :" + c_value + " to:" + par2); // requested feature, not in original c_value = (int) par2; } Meanimp = duplicateImage(ip); ImageConverter ic = new ImageConverter(Meanimp); ic.convertToGray32(); ipMean = Meanimp.getProcessor(); RankFilters rf = new RankFilters(); rf.rank(ipMean, radius, rf.MEAN); // Mean // Meanimp.show(); Varimp = duplicateImage(ip); ic = new ImageConverter(Varimp); ic.convertToGray32(); ipVar = Varimp.getProcessor(); rf.rank(ipVar, radius, rf.VARIANCE); // Variance // Varimp.show(); byte[] pixels = (byte[]) ip.getPixels(); float[] mean = (float[]) ipMean.getPixels(); float[] var = (float[]) ipVar.getPixels(); for (int i = 0; i < pixels.length; i++) pixels[i] = ((int) (pixels[i] & 0xff) > (int) (mean[i] + k_value * Math.sqrt(var[i]) - c_value)) ? object : backg; // imp.updateAndDraw(); return; }
/*------------------------------------------------------------------*/ void doIt(ImageProcessor ip) { int width = ip.getWidth(); int height = ip.getHeight(); double hLine[] = new double[width]; double vLine[] = new double[height]; if (!(ip.getPixels() instanceof float[])) { throw new IllegalArgumentException("Float image required"); } switch (operation) { case GRADIENT_MAGNITUDE: { ImageProcessor h = ip.duplicate(); ImageProcessor v = ip.duplicate(); float[] floatPixels = (float[]) ip.getPixels(); float[] floatPixelsH = (float[]) h.getPixels(); float[] floatPixelsV = (float[]) v.getPixels(); getHorizontalGradient(h, FLT_EPSILON); getVerticalGradient(v, FLT_EPSILON); for (int y = 0, k = 0; (y < height); y++) { for (int x = 0; (x < width); x++, k++) { floatPixels[k] = (float) Math.sqrt( floatPixelsH[k] * floatPixelsH[k] + floatPixelsV[k] * floatPixelsV[k]); } stepProgressBar(); } } break; case GRADIENT_DIRECTION: { ImageProcessor h = ip.duplicate(); ImageProcessor v = ip.duplicate(); float[] floatPixels = (float[]) ip.getPixels(); float[] floatPixelsH = (float[]) h.getPixels(); float[] floatPixelsV = (float[]) v.getPixels(); getHorizontalGradient(h, FLT_EPSILON); getVerticalGradient(v, FLT_EPSILON); for (int y = 0, k = 0; (y < height); y++) { for (int x = 0; (x < width); x++, k++) { floatPixels[k] = (float) Math.atan2(floatPixelsH[k], floatPixelsV[k]); } stepProgressBar(); } } break; case LAPLACIAN: { ImageProcessor hh = ip.duplicate(); ImageProcessor vv = ip.duplicate(); float[] floatPixels = (float[]) ip.getPixels(); float[] floatPixelsHH = (float[]) hh.getPixels(); float[] floatPixelsVV = (float[]) vv.getPixels(); getHorizontalHessian(hh, FLT_EPSILON); getVerticalHessian(vv, FLT_EPSILON); for (int y = 0, k = 0; (y < height); y++) { for (int x = 0; (x < width); x++, k++) { floatPixels[k] = (float) (floatPixelsHH[k] + floatPixelsVV[k]); } stepProgressBar(); } } break; case LARGEST_HESSIAN: { ImageProcessor hh = ip.duplicate(); ImageProcessor vv = ip.duplicate(); ImageProcessor hv = ip.duplicate(); float[] floatPixels = (float[]) ip.getPixels(); float[] floatPixelsHH = (float[]) hh.getPixels(); float[] floatPixelsVV = (float[]) vv.getPixels(); float[] floatPixelsHV = (float[]) hv.getPixels(); getHorizontalHessian(hh, FLT_EPSILON); getVerticalHessian(vv, FLT_EPSILON); getCrossHessian(hv, FLT_EPSILON); for (int y = 0, k = 0; (y < height); y++) { for (int x = 0; (x < width); x++, k++) { floatPixels[k] = (float) (0.5 * (floatPixelsHH[k] + floatPixelsVV[k] + Math.sqrt( 4.0 * floatPixelsHV[k] * floatPixelsHV[k] + (floatPixelsHH[k] - floatPixelsVV[k]) * (floatPixelsHH[k] - floatPixelsVV[k])))); } stepProgressBar(); } } break; case SMALLEST_HESSIAN: { ImageProcessor hh = ip.duplicate(); ImageProcessor vv = ip.duplicate(); ImageProcessor hv = ip.duplicate(); float[] floatPixels = (float[]) ip.getPixels(); float[] floatPixelsHH = (float[]) hh.getPixels(); float[] floatPixelsVV = (float[]) vv.getPixels(); float[] floatPixelsHV = (float[]) hv.getPixels(); getHorizontalHessian(hh, FLT_EPSILON); getVerticalHessian(vv, FLT_EPSILON); getCrossHessian(hv, FLT_EPSILON); for (int y = 0, k = 0; (y < height); y++) { for (int x = 0; (x < width); x++, k++) { floatPixels[k] = (float) (0.5 * (floatPixelsHH[k] + floatPixelsVV[k] - Math.sqrt( 4.0 * floatPixelsHV[k] * floatPixelsHV[k] + (floatPixelsHH[k] - floatPixelsVV[k]) * (floatPixelsHH[k] - floatPixelsVV[k])))); } stepProgressBar(); } } break; case HESSIAN_ORIENTATION: { ImageProcessor hh = ip.duplicate(); ImageProcessor vv = ip.duplicate(); ImageProcessor hv = ip.duplicate(); float[] floatPixels = (float[]) ip.getPixels(); float[] floatPixelsHH = (float[]) hh.getPixels(); float[] floatPixelsVV = (float[]) vv.getPixels(); float[] floatPixelsHV = (float[]) hv.getPixels(); getHorizontalHessian(hh, FLT_EPSILON); getVerticalHessian(vv, FLT_EPSILON); getCrossHessian(hv, FLT_EPSILON); for (int y = 0, k = 0; (y < height); y++) { for (int x = 0; (x < width); x++, k++) { if (floatPixelsHV[k] < 0.0) { floatPixels[k] = (float) (-0.5 * Math.acos( (floatPixelsHH[k] - floatPixelsVV[k]) / Math.sqrt( 4.0 * floatPixelsHV[k] * floatPixelsHV[k] + (floatPixelsHH[k] - floatPixelsVV[k]) * (floatPixelsHH[k] - floatPixelsVV[k])))); } else { floatPixels[k] = (float) (0.5 * Math.acos( (floatPixelsHH[k] - floatPixelsVV[k]) / Math.sqrt( 4.0 * floatPixelsHV[k] * floatPixelsHV[k] + (floatPixelsHH[k] - floatPixelsVV[k]) * (floatPixelsHH[k] - floatPixelsVV[k])))); } } stepProgressBar(); } } break; default: throw new IllegalArgumentException("Invalid operation"); } ip.resetMinAndMax(); imp.updateAndDraw(); } /* end doIt */
ImageProcessor setup(ImagePlus imp) { ImageProcessor ip; int type = imp.getType(); if (type != ImagePlus.COLOR_RGB) return null; ip = imp.getProcessor(); int id = imp.getID(); int slice = imp.getCurrentSlice(); if ((id != previousImageID) | (slice != previousSlice) | (flag)) { flag = false; // if true, flags a change from HSB to RGB or viceversa numSlices = imp.getStackSize(); stack = imp.getStack(); width = stack.getWidth(); height = stack.getHeight(); numPixels = width * height; hSource = new byte[numPixels]; sSource = new byte[numPixels]; bSource = new byte[numPixels]; // restore = (int[])ip.getPixelsCopy(); //This runs into trouble sometimes, so do it the // long way: int[] temp = (int[]) ip.getPixels(); restore = new int[numPixels]; for (int i = 0; i < numPixels; i++) restore[i] = temp[i]; fillMask = new int[numPixels]; // Get hsb or rgb from image. ColorProcessor cp = (ColorProcessor) ip; IJ.showStatus("Gathering data"); if (isRGB) cp.getRGB(hSource, sSource, bSource); else cp.getHSB(hSource, sSource, bSource); IJ.showStatus("done"); // Create a spectrum ColorModel for the Hue histogram plot. Color c; byte[] reds = new byte[256]; byte[] greens = new byte[256]; byte[] blues = new byte[256]; for (int i = 0; i < 256; i++) { c = Color.getHSBColor(i / 255f, 1f, 1f); reds[i] = (byte) c.getRed(); greens[i] = (byte) c.getGreen(); blues[i] = (byte) c.getBlue(); } ColorModel cm = new IndexColorModel(8, 256, reds, greens, blues); // Make an image with just the hue from the RGB image and the spectrum LUT. // This is just for a hue histogram for the plot. Do not show it. // ByteProcessor bpHue = new ByteProcessor(width,height,h,cm); ByteProcessor bpHue = new ByteProcessor(width, height, hSource, cm); ImagePlus impHue = new ImagePlus("Hue", bpHue); // impHue.show(); ByteProcessor bpSat = new ByteProcessor(width, height, sSource, cm); ImagePlus impSat = new ImagePlus("Sat", bpSat); // impSat.show(); ByteProcessor bpBri = new ByteProcessor(width, height, bSource, cm); ImagePlus impBri = new ImagePlus("Bri", bpBri); // impBri.show(); plot.setHistogram(impHue, 0); splot.setHistogram(impSat, 1); bplot.setHistogram(impBri, 2); updateLabels(); updatePlot(); updateScrollBars(); imp.updateAndDraw(); } previousImageID = id; previousSlice = slice; return ip; }