/** * ********************************************************************* * * <p>Synopsis [ ] * * <p>keep tracing back to child until find one with logics defined assume it has either 1 or 2 * children this method is recursive Note: Recursion is not necessary and does not occur if we * sort the gates by distance to input, then simulate logic in that order. * * <p>logic is computed according to Gate type and input logics * * <p>********************************************************************* */ public static void simulateLogic(Gate g) { if (g.is_unvisited()) { ArrayList<Gate> children = g.getChildren(); for (Gate child : children) { if (child.is_unvisited()) { simulateLogic(child); // recursive } } // if all children have been visited, visit the current gate 'g' g.set_unvisited(false); g.set_logics(GateUtil.computeGateLogics(g)); } }
/** * ********************************************************************* * * <p>Synopsis [ ] * * <p>********************************************************************* */ public static void simulateHistogramREU(Gate g, GateLibrary gate_library, Args options) { if (g.is_unvisited()) { g.set_unvisited(false); ArrayList<Gate> children = g.getChildren(); for (Gate child : children) { if (child.is_unvisited()) { simulateHistogramREU(child, gate_library, options); } } // initialize g.get_histogram_reus().clear(); for (int i = 0; i < g.get_logics().size(); ++i) { // rows in truth table g.get_histogram_reus().add(new double[g.get_histogram_bins().get_NBINS()]); for (int j = 0; j < g.get_histogram_bins().get_NBINS(); ++j) { g.get_histogram_reus().get(i)[j] = 0.0; } } if (g.Type == GateType.OUTPUT_OR || g.Type == GateType.OUTPUT) { g.set_histogram_reus(GateUtil.getSumOfGateInputHistograms(g, gate_library, options)); } else if (g.Type == GateType.AND) { g.set_histogram_reus(GateUtil.getANDOfGateInputHistograms(g)); } else if (g.Type == GateType.NOT || g.Type == GateType.NOR) { // 2. For each row: for each bin: for each output bin: add normalizeToValue ArrayList<double[]> input_convreus = GateUtil.getSumOfGateInputHistograms(g, gate_library, options); g.set_in_histogram_reus(input_convreus); for (int i = 0; i < input_convreus.size(); ++i) { /*if(Args.dontcare_rows.contains(i)) { for(int bin=0; bin< g.get_histogram_reus().get(i).length; ++bin) { g.get_histogram_reus().get(i)[bin] = 0.0; } continue; }*/ double[] convhist = input_convreus.get(i); for (int bin = 0; bin < g.get_histogram_bins().get_NBINS(); ++bin) { double fractional_counts = convhist[bin]; double[] xslice = g.get_xfer_hist().get_xfer_interp().get(bin); for (int xslice_bin = 0; xslice_bin < g.get_histogram_bins().get_NBINS(); ++xslice_bin) { g.get_histogram_reus().get(i)[xslice_bin] += xslice[xslice_bin] * fractional_counts; } } } } // evaluateGateHistogramOverlap(g); //to compute gate scores } }
/** * ********************************************************************* * * <p>Synopsis [ ] * * <p>keep tracing back to child until find one with logics defined assume it has either 1 or 2 * children this method is recursive Note: Recursion is not necessary and does not occur if we * sort the gates by distance to input, then simulate logic in that order. * * <p>For NOT gate, compute output REU based on child1 REU and xfer function For NOR gate, compute * output REU based on child1 REU + child2 REU and xfer function For OUTPUT gate, output REU = * child1 REU For OUTPUT_OR gate, output REU = child1 REU + child2 REU * * <p>********************************************************************* */ public static void simulateREU(Gate g, GateLibrary gate_library, Args options) { if (g.is_unvisited()) { g.set_unvisited(false); ArrayList<Gate> children = g.getChildren(); for (Gate child : children) { if (child.is_unvisited()) { simulateREU(child, gate_library, options); } } /** * Multidimensional response functions are not symmetric, so which wire maps to which variable * must be determined. Not relevant if there is only a single independent variable in the * response function (i.e. Hill equation). */ if (g.get_variable_names().size() > 1) { setBestVariableMapping(g, gate_library, options); } /////////////////////////////////////////////////////////////////// // now that the best variable mapping was found, resimulate /////////////////////////////////////////////////////////////////// g.get_outreus().clear(); g.get_inreus().clear(); for (int i = 0; i < g.get_logics().size(); ++i) { // rows in truth table /*if (Args.dontcare_rows.contains(i)) { g.get_outreus().add(0.0); continue; }*/ GateUtil.mapWiresToVariables(g, g.get_variable_names()); /** * For example, String = "x". Double = summed REUs for tandem promoters i is the row in the * truth table. */ HashMap<String, Double> variable_values = GateUtil.getVariableValues(g, i, gate_library, options); // v = "x" for (String v : variable_values.keySet()) { if (!g.get_inreus().containsKey(v)) { // initialize with empty arraylist g.get_inreus().put(v, new ArrayList<Double>()); } g.get_inreus().get(v).add(variable_values.get(v)); } double output_reu = ResponseFunction.computeOutput( // sum contributions of tandem promoters for this row in the truth table // ...unless there is tandem promoter data, then we look up the value instead of // adding variable_values, g.get_params(), g.get_equation()); g.get_outreus().add(output_reu); } // evaluateGate(g); ////////////////////////////////////////////// } }