private static IList<IList<IAgent>> clusteringUsingWeka( final IScope scope, final Clusterer clusterer, final IList<String> attributes, final IAddressableContainer<Integer, IAgent, Integer, IAgent> agents) throws GamaRuntimeException { Instances dataset = convertToInstances(scope, attributes, agents); try { clusterer.buildClusterer(dataset); IList<IList<IAgent>> groupes = GamaListFactory.create(Types.LIST.of(Types.AGENT)); for (int i = 0; i < clusterer.numberOfClusters(); i++) { groupes.add(GamaListFactory.<IAgent>create(Types.AGENT)); } for (int i = 0; i < dataset.numInstances(); i++) { Instance inst = dataset.instance(i); int clusterIndex = -1; clusterIndex = clusterer.clusterInstance(inst); IList<IAgent> groupe = groupes.get(clusterIndex); groupe.add(agents.get(scope, i)); } return groupes; } catch (Exception e) { return null; } }
/** * Print the cluster assignments for either the training or the testing data. * * @param clusterer the clusterer to use for cluster assignments * @return a string containing the instance indexes and cluster assigns. * @exception if cluster assignments can't be printed */ private static String printClusterings( Clusterer clusterer, Instances train, String testFileName, Range attributesToOutput) throws Exception { StringBuffer text = new StringBuffer(); int i = 0; int cnum; if (testFileName.length() != 0) { BufferedReader testStream = null; try { testStream = new BufferedReader(new FileReader(testFileName)); } catch (Exception e) { throw new Exception("Can't open file " + e.getMessage() + '.'); } Instances test = new Instances(testStream, 1); while (test.readInstance(testStream)) { try { cnum = clusterer.clusterInstance(test.instance(0)); text.append( i + " " + cnum + " " + attributeValuesString(test.instance(0), attributesToOutput) + "\n"); } catch (Exception e) { /* throw new Exception('\n' + "Unable to cluster instance\n" + e.getMessage()); */ text.append( i + " Unclustered " + attributeValuesString(test.instance(0), attributesToOutput) + "\n"); } test.delete(0); i++; } } else // output for training data { for (i = 0; i < train.numInstances(); i++) { try { cnum = clusterer.clusterInstance(train.instance(i)); text.append( i + " " + cnum + " " + attributeValuesString(train.instance(i), attributesToOutput) + "\n"); } catch (Exception e) { /* throw new Exception('\n' + "Unable to cluster instance\n" + e.getMessage()); */ text.append( i + " Unclustered " + attributeValuesString(train.instance(i), attributesToOutput) + "\n"); } } } return text.toString(); }
/** * Print the cluster statistics for either the training or the testing data. * * @param clusterer the clusterer to use for generating statistics. * @return a string containing cluster statistics. * @exception if statistics can't be generated. */ private static String printClusterStats(Clusterer clusterer, String fileName) throws Exception { StringBuffer text = new StringBuffer(); int i = 0; int cnum; double loglk = 0.0; double[] dist; double temp; int cc = clusterer.numberOfClusters(); double[] instanceStats = new double[cc]; int unclusteredInstances = 0; if (fileName.length() != 0) { BufferedReader inStream = null; try { inStream = new BufferedReader(new FileReader(fileName)); } catch (Exception e) { throw new Exception("Can't open file " + e.getMessage() + '.'); } Instances inst = new Instances(inStream, 1); while (inst.readInstance(inStream)) { try { cnum = clusterer.clusterInstance(inst.instance(0)); if (clusterer instanceof DensityBasedClusterer) { loglk += ((DensityBasedClusterer) clusterer).logDensityForInstance(inst.instance(0)); // temp = Utils.sum(dist); } instanceStats[cnum]++; } catch (Exception e) { unclusteredInstances++; } inst.delete(0); i++; } /* // count the actual number of used clusters int count = 0; for (i = 0; i < cc; i++) { if (instanceStats[i] > 0) { count++; } } if (count > 0) { double [] tempStats = new double [count]; count=0; for (i=0;i<cc;i++) { if (instanceStats[i] > 0) { tempStats[count++] = instanceStats[i]; } } instanceStats = tempStats; cc = instanceStats.length; } */ int clustFieldWidth = (int) ((Math.log(cc) / Math.log(10)) + 1); int numInstFieldWidth = (int) ((Math.log(i) / Math.log(10)) + 1); double sum = Utils.sum(instanceStats); loglk /= sum; text.append("Clustered Instances\n"); for (i = 0; i < cc; i++) { if (instanceStats[i] > 0) { text.append( Utils.doubleToString((double) i, clustFieldWidth, 0) + " " + Utils.doubleToString(instanceStats[i], numInstFieldWidth, 0) + " (" + Utils.doubleToString((instanceStats[i] / sum * 100.0), 3, 0) + "%)\n"); } } if (unclusteredInstances > 0) { text.append("\nUnclustered Instances : " + unclusteredInstances); } if (clusterer instanceof DensityBasedClusterer) { text.append("\n\nLog likelihood: " + Utils.doubleToString(loglk, 1, 5) + "\n"); } } return text.toString(); }
/** * Evaluate the clusterer on a set of instances. Calculates clustering statistics and stores * cluster assigments for the instances in m_clusterAssignments * * @param test the set of instances to cluster * @exception Exception if something goes wrong */ public void evaluateClusterer(Instances test) throws Exception { int i = 0; int cnum; double loglk = 0.0; double[] dist; double temp; int cc = m_Clusterer.numberOfClusters(); m_numClusters = cc; int numInstFieldWidth = (int) ((Math.log(test.numInstances()) / Math.log(10)) + 1); double[] instanceStats = new double[cc]; m_clusterAssignments = new double[test.numInstances()]; Instances testCopy = test; boolean hasClass = (testCopy.classIndex() >= 0); int unclusteredInstances = 0; // If class is set then do class based evaluation as well if (hasClass) { if (testCopy.classAttribute().isNumeric()) { throw new Exception("ClusterEvaluation: Class must be nominal!"); } Remove removeClass = new Remove(); removeClass.setAttributeIndices("" + (testCopy.classIndex() + 1)); removeClass.setInvertSelection(false); removeClass.setInputFormat(testCopy); testCopy = Filter.useFilter(testCopy, removeClass); } for (i = 0; i < testCopy.numInstances(); i++) { cnum = -1; try { if (m_Clusterer instanceof DensityBasedClusterer) { loglk += ((DensityBasedClusterer) m_Clusterer).logDensityForInstance(testCopy.instance(i)); // temp = Utils.sum(dist); // Utils.normalize(dist); cnum = m_Clusterer.clusterInstance(testCopy.instance(i)); // Utils.maxIndex(dist); m_clusterAssignments[i] = (double) cnum; } else { cnum = m_Clusterer.clusterInstance(testCopy.instance(i)); m_clusterAssignments[i] = (double) cnum; } } catch (Exception e) { unclusteredInstances++; } if (cnum != -1) { instanceStats[cnum]++; } } /* // count the actual number of used clusters int count = 0; for (i = 0; i < cc; i++) { if (instanceStats[i] > 0) { count++; } } if (count > 0) { double [] tempStats = new double [count]; double [] map = new double [m_clusterAssignments.length]; count=0; for (i=0;i<cc;i++) { if (instanceStats[i] > 0) { tempStats[count] = instanceStats[i]; map[i] = count; count++; } } instanceStats = tempStats; cc = instanceStats.length; for (i=0;i<m_clusterAssignments.length;i++) { m_clusterAssignments[i] = map[(int)m_clusterAssignments[i]]; } } */ double sum = Utils.sum(instanceStats); loglk /= sum; m_logL = loglk; m_clusteringResults.append(m_Clusterer.toString()); m_clusteringResults.append("Clustered Instances\n\n"); int clustFieldWidth = (int) ((Math.log(cc) / Math.log(10)) + 1); for (i = 0; i < cc; i++) { if (instanceStats[i] > 0) { m_clusteringResults.append( Utils.doubleToString((double) i, clustFieldWidth, 0) + " " + Utils.doubleToString(instanceStats[i], numInstFieldWidth, 0) + " (" + Utils.doubleToString((instanceStats[i] / sum * 100.0), 3, 0) + "%)\n"); } } if (unclusteredInstances > 0) { m_clusteringResults.append("\nUnclustered instances : " + unclusteredInstances); } if (m_Clusterer instanceof DensityBasedClusterer) { m_clusteringResults.append("\n\nLog likelihood: " + Utils.doubleToString(loglk, 1, 5) + "\n"); } if (hasClass) { evaluateClustersWithRespectToClass(test); } }