Пример #1
0
  private boolean recalculateMedoids(
      Map<Word, Integer> groups, List<Word> medoids, ClusterResult result) {
    List<Word> temp = new ArrayList<>();
    temp.addAll(medoids);

    boolean changed = false;
    double minCost = result.quality();

    List<Word> nonMedoids = new ArrayList<>();
    nonMedoids.addAll(words);
    nonMedoids.removeAll(temp);

    if (nonMedoids.size() == 0) return false;

    // replace a random element in the medoids list with a random element in the non-medoids list
    int index = new Random().nextInt(nonMedoids.size());
    temp.set(new Random().nextInt(k), nonMedoids.get(index));
    Map<Word, Integer> newGroups = groupPoints(temp);
    double newCost = computeCost(temp, newGroups);

    if (newCost < minCost) {
      result = updateClusters(temp, newGroups, newCost);
      changed = true;
    }
    return changed;
  }
Пример #2
0
  public void printTheBestByThr(long thr) {
    System.out.println("------THE BEST BY SPEAKERil------");
    Hashtable cluster = clusterResultSet.getCluster();
    Iterator<String> it = cluster.keySet().iterator();
    Hashtable<String, Vector> speaker = new Hashtable<String, Vector>();
    while (it.hasNext()) {
      String cr_it = (String) it.next();
      // System.out.println(cr_it);
      ClusterResult cr = (ClusterResult) cluster.get(cr_it);
      Object[] db_arr = cr.getValue().keySet().toArray();
      Arrays.sort(db_arr);
      int ln = db_arr.length;
      if (speaker.keySet().contains((String) cr.getValue().get(db_arr[ln - 1]))) {
        Vector<String> tmp = speaker.get(cr.getValue().get(db_arr[ln - 1]));
        tmp.add(cr_it);
        speaker.put((String) cr.getValue().get(db_arr[ln - 1]), tmp);
      } else {
        Vector<String> tmp = new Vector<String>();
        tmp.add(cr_it);
        speaker.put((String) cr.getValue().get(db_arr[ln - 1]), tmp);
      }
      // System.out.println("score="+db_arr[ln-1] +" name="+cr.getValue().get(db_arr[ln-1])  );
    }
    Iterator<String> sp_it = speaker.keySet().iterator();
    // String f
    // ="/Users/labcontenuti/Documents/workspace/AudioActive/84/test_file/properties/testindent.txt";

    OutputStreamWriter dos;
    try {
      dos =
          new OutputStreamWriter(new FileOutputStream(outputRoot + "/" + baseName + "_ident.txt"));

      while (sp_it.hasNext()) {
        String key = (String) sp_it.next();
        System.out.println("name=" + key);
        for (int i = 0; i < ((Vector) speaker.get(key)).size(); i++) {
          TreeMap<Integer, Segment> map =
              clusterSetResult
                  .getCluster((String) ((Vector) speaker.get(key)).get(i))
                  .clusterToFrames();
          System.out.println(
              " cluster="
                  + ((Vector) speaker.get(key)).get(i)
                  + " lenght="
                  + clusterSetResult
                      .getCluster((String) ((Vector) speaker.get(key)).get(i))
                      .getLength());
          dos.write(((Vector) speaker.get(key)).get(i) + "=" + key + "\n");
        }
      }

      dos.close();
    } catch (IOException e) {
      // TODO Auto-generated catch block
      e.printStackTrace();
    }
  }
Пример #3
0
  public ClusterSet make(
      AudioFeatureSet featureSet,
      ClusterSet clusterSet,
      GMMArrayList gmmList,
      GMMArrayList gmmTopList,
      Parameter parameter)
      throws DiarizationException, IOException {
    logger.info("Compute Score");
    int size = gmmList.size();
    logger.finer("GMM size:" + size);
    ArrayList<String> genderString = new ArrayList<String>();
    ArrayList<String> bandwidthString = new ArrayList<String>();
    for (int i = 0; i < size; i++) {
      String gmmName = gmmList.get(i).getName();
      if (parameter.getParameterScore().isGender() == true) {
        if (gmmName.equals("MS")) {
          genderString.add(Cluster.genderStrings[1]);
          bandwidthString.add(Segment.bandwidthStrings[2]);
        } else if (gmmName.equals("FS")) {
          genderString.add(Cluster.genderStrings[2]);
          bandwidthString.add(Segment.bandwidthStrings[2]);
        } else if (gmmName.equals("MT")) {
          genderString.add(Cluster.genderStrings[1]);
          bandwidthString.add(Segment.bandwidthStrings[1]);
        } else if (gmmName.equals("FT")) {
          genderString.add(Cluster.genderStrings[2]);
          bandwidthString.add(Segment.bandwidthStrings[1]);
        } else {
          genderString.add(Cluster.genderStrings[0]);
          bandwidthString.add(Segment.bandwidthStrings[0]);
        }
      } else {
        genderString.add(Cluster.genderStrings[0]);
        bandwidthString.add(Segment.bandwidthStrings[0]);
      }
    }

    ClusterSet clusterSetResult = new ClusterSet();
    for (Cluster cluster : clusterSet.clusterSetValue()) {
      double[] sumScoreVector = new double[size];
      int[] sumLenghtVector = new int[size];
      double ubmScore = 0.0;
      GMM gmmTop = null;
      if (parameter.getParameterTopGaussian().getScoreNTop() >= 0) {
        gmmTop = gmmTopList.get(0);
      }
      Arrays.fill(sumScoreVector, 0.0);
      Arrays.fill(sumLenghtVector, 0);
      for (Segment currantSegment : cluster) {
        Segment segment = (currantSegment.clone());
        int end = segment.getStart() + segment.getLength();
        featureSet.setCurrentShow(segment.getShowName());
        double[] scoreVector = new double[size];
        double maxScore = 0.0;
        int idxMaxScore = 0;
        for (int i = 0; i < size; i++) {
          gmmList.get(i).score_initialize();
        }
        for (int start = segment.getStart(); start < end; start++) {
          for (int i = 0; i < size; i++) {
            GMM gmm = gmmList.get(i);
            if (parameter.getParameterTopGaussian().getScoreNTop() >= 0) {
              if (i == 0) {
                gmmTop.score_getAndAccumulateAndFindTopComponents(
                    featureSet, start, parameter.getParameterTopGaussian().getScoreNTop());
              }
              gmm.score_getAndAccumulateForComponentSubset(
                  featureSet, start, gmmTop.getTopGaussianVector());
            } else {
              gmm.score_getAndAccumulate(featureSet, start);
            }
          }
        }

        if (parameter.getParameterTopGaussian().getScoreNTop() >= 0) {
          ubmScore = gmmTop.score_getMeanLog();
          gmmTop.score_getSumLog();
          gmmTop.score_getCount();
          gmmTop.score_reset();
        }
        for (int i = 0; i < size; i++) {
          GMM gmm = gmmList.get(i);
          scoreVector[i] = gmm.score_getMeanLog();
          sumLenghtVector[i] += gmm.score_getCount();
          sumScoreVector[i] += gmm.score_getSumLog();
          if (i == 0) {
            maxScore = scoreVector[0];
            idxMaxScore = 0;
          } else {
            double value = scoreVector[i];
            if (maxScore < value) {
              maxScore = value;
              idxMaxScore = i;
            }
          }
          gmm.score_reset();
        }
        if (parameter.getParameterScore().isTNorm()) {
          double sumScore = 0;
          double sum2Score = 0;
          for (int i = 0; i < size; i++) {
            sumScore += scoreVector[i];
            sum2Score += (scoreVector[i] * scoreVector[i]);
          }
          for (int i = 0; i < size; i++) {
            double value = scoreVector[i];
            double mean = (sumScore - value) / (size - 1);
            double et = Math.sqrt(((sum2Score - (value * value)) / (size - 1)) - (mean * mean));
            scoreVector[i] = (value - mean) / et;
          }
        }
        if (parameter.getParameterScore().isGender() == true) {
          segment.setBandwidth(bandwidthString.get(idxMaxScore));
          segment.setInformation("segmentGender", genderString.get(idxMaxScore));
        }
        if (parameter.getParameterScore().isBySegment()) {
          for (int k = 0; k < size; k++) {
            double score = scoreVector[k];
            GMM gmm = gmmList.get(k);
            segment.setInformation("score:" + gmm.getName(), score);
            currantSegment.setInformation("score:" + gmm.getName(), score);
          }
          if (parameter.getParameterTopGaussian().getScoreNTop() >= 0) {
            segment.setInformation("score:" + "UBM", ubmScore);
            currantSegment.setInformation("score:" + "UBM", ubmScore);
          }
        }
        String newName = cluster.getName();
        if (parameter.getParameterScore().isByCluster() == false) {
          if ((scoreVector[idxMaxScore] > parameter.getParameterSegmentation().getThreshold())
              && (parameter.getParameterScore().getLabel()
                  != ParameterScore.LabelType.LABEL_TYPE_NONE.ordinal())) {
            if (parameter.getParameterScore().getLabel()
                == ParameterScore.LabelType.LABEL_TYPE_ADD.ordinal()) {
              newName += "_";
              newName += gmmList.get(idxMaxScore).getName();
            } else {
              newName = gmmList.get(idxMaxScore).getName();
            }
          }

          Cluster temporaryCluster = clusterSetResult.getOrCreateANewCluster(newName);
          temporaryCluster.setGender(cluster.getGender());
          if (parameter.getParameterScore().isGender() == true) {
            temporaryCluster.setGender(genderString.get(idxMaxScore));
          }
          temporaryCluster.addSegment(segment);
        }
      }
      if (parameter.getParameterScore().isByCluster()) {
        for (int i = 0; i < size; i++) {
          sumScoreVector[i] /= sumLenghtVector[i];
        }
        if (parameter.getParameterScore().isTNorm()) {
          double sumScore = 0;
          double sum2Score = 0;
          for (int i = 0; i < size; i++) {
            sumScore += sumScoreVector[i];
            sum2Score += (sumScoreVector[i] * sumScoreVector[i]);
          }
          for (int i = 0; i < size; i++) {
            double value = sumScoreVector[i];
            double mean = (sumScore - value) / (size - 1);
            double et = Math.sqrt(((sum2Score - (value * value)) / (size - 1)) - (mean * mean));
            sumScoreVector[i] = (value - mean) / et;
          }
        }
        double maxScore = sumScoreVector[0];
        int idxMaxScore = 0;
        for (int i = 1; i < size; i++) {
          double s = sumScoreVector[i];
          if (maxScore < s) {
            maxScore = s;
            idxMaxScore = i;
          }
        }
        String newName = cluster.getName();
        if ((sumScoreVector[idxMaxScore] > parameter.getParameterSegmentation().getThreshold())
            && (parameter.getParameterScore().getLabel()
                != ParameterScore.LabelType.LABEL_TYPE_NONE.ordinal())) {
          if (parameter.getParameterScore().getLabel()
              == ParameterScore.LabelType.LABEL_TYPE_ADD.ordinal()) {
            newName += "_";
            newName += gmmList.get(idxMaxScore).getName();
          } else {
            newName = gmmList.get(idxMaxScore).getName();
          }
          // logger.finer("cluster name=" + cluster.getName() + " new_name=" + newName);
        }
        Cluster tempororaryCluster = clusterSetResult.getOrCreateANewCluster(newName);
        tempororaryCluster.setGender(cluster.getGender());
        if (parameter.getParameterScore().isGender() == true) {
          tempororaryCluster.setGender(genderString.get(idxMaxScore));
        }
        tempororaryCluster.setName(newName);
        for (Segment currantSegment : cluster) {
          Segment segment = (currantSegment.clone());
          if (parameter.getParameterScore().isGender() == true) {
            segment.setBandwidth(bandwidthString.get(idxMaxScore));
          }
          tempororaryCluster.addSegment(segment);
        }
        for (int k = 0; k < size; k++) {
          double score = sumScoreVector[k];
          GMM gmm = gmmList.get(k);
          // logger.finer("****clustername = " + newName + " name=" + gmm.getName() + " =" + score+"
          // k="+k);
          // logger.log(Level.SEVERE, "****clustername = " + newName + " name=" + gmm.getName() + "
          // =" + score);
          tempororaryCluster.setInformation("score:" + gmm.getName(), score);
          ClusterResult cr = new ClusterResult();
          cr.setName(newName);
          cr.getValue().put(score, gmm.getName());
          System.out.println(
              "------ clusterResultSet.putValue(newName, gmm.getName(), score)=----------------");
          System.out.println(newName + "  " + gmm.getName() + "  " + score);
          if (isName(gmm.getName())) {
            clusterResultSet.putValue(newName, gmm.getName(), score);
          } else {
            System.out.println("*****************" + gmm.getName() + " Non nome valido  ");
          }
        }

        if (parameter.getParameterTopGaussian().getScoreNTop() >= 0) {
          // tempororaryCluster.putInformation("score:" + "length", ubmSumLen);
          // tempororaryCluster.putInformation("score:" + "UBM", ubmSumScore / ubmSumLen);
        }
      }
    }
    this.clusterSetResult = clusterSetResult;
    return clusterSetResult;
  }