/** * Converts grid-relative winds to true (or absolute) winds. The U and V components of true wind * are {@link WesterlyWind} and {@link SoutherlyWind}, respectively. If the input {@link * visad.Field} is not a time-series, then it must be a {@link visad.FlatField} and it must be * compatible with the argument of {@link #cartesianHorizontalWind(FlatField)}. If, however, the * the input {@link visad.Field} is a time-series, then its domain must be a temporal {@link * visad.Gridded1DSet} or a {@link visad.SingletonSet} and its range values must be compatible * with the argument of {@link #cartesianHorizontalWind(FlatField)}. * * @param rel The grid-relative winds. * @return The time-series of true wind corresponding to the input. * @throws NullPointerException if <code>rel</code> is <code>null</code>. * @throws IllegalArgumentException if the input field is not a time-series and is incompatible * with {@link #cartesianHorizontalWind(FlatField)}, or if the input field is a time-series * but its range values are incompatible with {@link #cartesianHorizontalWind(FlatField)}. * @throws VisADException if a VisAD failure occurs. * @throws RemoteException if a Java RMI failure occurs. */ public static Field cartesianHorizontalWind(Field rel) throws VisADException, RemoteException { RealTupleType domType = ((FunctionType) rel.getType()).getDomain(); Field result = null; if (RealType.Time.equalsExceptNameButUnits(domType) || RealType.TimeInterval.equalsExceptNameButUnits(domType)) { result = timeSeriesCartesianHorizontalWind(rel); } else { result = cartesianHorizontalWind((FlatField) rel); } return result; }
/** * Converts a time-series of grid-relative winds to a time-series of true (or absolute) winds. The * U and V components of true wind are {@link WesterlyWind} and {@link SoutherlyWind}, * respectively. The domain of the input {@link visad.Field} must be a temporal {@link * visad.Gridded1DSet} or a {@link visad.SingletonSet}. The range values of the input {@link * visad.Field} must be {@link visad.FlatField}s. The domains of the range {@link * visad.FlatField}s must have a manifold dimension of two or greater and they must have a * reference system which contains {@link visad.RealType#Latitude} and {@link * visad.RealType#Longitude}. The number of components in the range of the {@link * visad.FlatField}s must be two. Both components must have units convertible with {@link * #DEFAULT_SPEED_UNIT}. The first and second components are assumed to be the wind components in * the direction of increasing first and second manifold dimension indexes, respectively. The * domains of the {@link visad.FlatField}s must be equal. The {@link visad.Field} returned by this * method has the same domain as the input {@link visad.Field}. The range values of the returned * {@link visad.Field} are {@link visad.FlatField}s that have the same domain as the input {@link * visad.FlatField}s. The {@link visad.MathType} of the range of the returned {@link * visad.FlatField}s will be <code>CartesianHorizontalWind.getEarthVectorType()</code>. * * @param rel The time-series of grid-relative wind. * @return The time-series of true wind corresponding to the input. * @throws NullPointerException if <code>rel</code> is <code>null</code>. * @throws IllegalArgumentException if the input field doesn't have a time-series domain, or if * the range values aren't {@link visad.FlatField} with the same domain, or if the domain of * the {@link visad.FlatField}s doesn't have a transformation to latitude and longitude, or if * the domain is irregular or has too few points, or if the {@link visad.FlatField}s don't * have two and only two components in their range, or if the default units of the {@link * visad.FlatField}s range aren't equal. * @throws VisADException if a VisAD failure occurs. * @throws RemoteException if a Java RMI failure occurs. * @see CartesianHorizontalWind */ public static Field timeSeriesCartesianHorizontalWind(Field rel) throws VisADException, RemoteException { FunctionType outerFuncType = (FunctionType) rel.getType(); RealTupleType outerDomType = outerFuncType.getDomain(); if (!(RealType.Time.equalsExceptNameButUnits(outerDomType) || !RealType.TimeInterval.equalsExceptNameButUnits(outerDomType))) { throw new IllegalArgumentException(outerDomType.toString()); } MathType innerFuncType = outerFuncType.getRange(); if (!(innerFuncType instanceof FunctionType)) { throw new IllegalArgumentException(innerFuncType.toString()); } Field innerField = (Field) rel.getSample(0); Set innerDom = innerField.getDomainSet(); if (innerDom instanceof SingletonSet) { return rel; } else if (innerDom instanceof GriddedSet) { int[] lengths = ((GriddedSet) innerDom).getLengths(); if ((lengths[0] == 1) && (lengths[1] == 1)) { return rel; } } // account for null units, assume m/sec Unit[] rangeUnits = innerField.getDefaultRangeUnits(); if ((rangeUnits == null) || (rangeUnits[0] == null) || rangeUnits[0].isDimensionless()) { rangeUnits = CartesianHorizontalWind.getEarthVectorType().getDefaultUnits(); } FunctionType innerType = new FunctionType( ((SetType) innerDom.getType()).getDomain(), CartesianHorizontalWind.getEarthVectorType()); FlatField uvField = new FlatField(innerType, innerDom, (CoordinateSystem) null, (Set[]) null, rangeUnits); Field result = new FieldImpl(new FunctionType(outerDomType, uvField.getType()), rel.getDomainSet()); // System.out.println("making rHatField"); Field rHatField = (doNewCode ? hatFieldNew(innerDom, 0) : hatFieldOld(innerDom, 0)); // System.out.println("making sHatField"); Field sHatField = (doNewCode ? hatFieldNew(innerDom, 1) : hatFieldOld(innerDom, 1)); float[][] rHats = rHatField.getFloats(false); // ucar.unidata.util.Misc.printArray("rHats[0]", rHats[0]); // ucar.unidata.util.Misc.printArray("rHats[1]", rHats[1]); // System.out.println("\n"); float[][] sHats = sHatField.getFloats(false); // ucar.unidata.util.Misc.printArray("sHats[0]", sHats[0]); // ucar.unidata.util.Misc.printArray("sHats[1]", sHats[1]); // System.out.println("\n"); float[] us = new float[innerDom.getLength()]; float[] vs = new float[us.length]; for (int i = 0, n = rel.getLength(); i < n; i++) { if (i > 0) { innerField = (Field) rel.getSample(i); Set dom = innerField.getDomainSet(); if (!innerDom.equals(dom)) { // System.out.println("new domain"); innerDom = dom; rHatField = (doNewCode ? hatFieldNew(innerDom, 0) : hatFieldOld(innerDom, 0)); sHatField = (doNewCode ? hatFieldNew(innerDom, 1) : hatFieldOld(innerDom, 1)); rHats = rHatField.getFloats(false); sHats = sHatField.getFloats(false); /* throw new IllegalArgumentException("template=" + innerDom.toString() + "; domain=" + dom.toString()); */ } uvField = new FlatField(innerType, innerDom, (CoordinateSystem) null, (Set[]) null, rangeUnits); us = new float[innerDom.getLength()]; vs = new float[us.length]; } float[][] rsWinds = innerField.getFloats(false); float[] rWinds = rsWinds[0]; float[] sWinds = rsWinds[1]; // ucar.unidata.util.Misc.printArray("rWinds", rWinds); // System.out.println("\n"); // ucar.unidata.util.Misc.printArray("sWinds", sWinds); // System.out.println("\n"); for (int j = 0; j < us.length; j++) { us[j] = rWinds[j] * rHats[0][j] + sWinds[j] * sHats[0][j]; vs[j] = rWinds[j] * rHats[1][j] + sWinds[j] * sHats[1][j]; } // ucar.unidata.util.Misc.printArray("us", us); // System.out.println("\n"); // ucar.unidata.util.Misc.printArray("vs", vs); // System.out.println("\n"); uvField.setSamples(new float[][] {us, vs}, false); result.setSample(i, uvField, false); } return result; }
public synchronized void drag_direct(VisADRay ray, boolean first, int mouseModifiers) { if (barbValues == null || ref == null || shadow == null) return; if (first) { stop = false; } else { if (stop) return; } // modify direction if mshift != 0 // modify speed if mctrl != 0 // modify speed and direction if neither int mshift = mouseModifiers & InputEvent.SHIFT_MASK; int mctrl = mouseModifiers & InputEvent.CTRL_MASK; float o_x = (float) ray.position[0]; float o_y = (float) ray.position[1]; float o_z = (float) ray.position[2]; float d_x = (float) ray.vector[0]; float d_y = (float) ray.vector[1]; float d_z = (float) ray.vector[2]; if (pickCrawlToCursor) { if (first) { offset_count = OFFSET_COUNT_INIT; } else { if (offset_count > 0) offset_count--; } if (offset_count > 0) { float mult = ((float) offset_count) / ((float) OFFSET_COUNT_INIT); o_x += mult * offsetx; o_y += mult * offsety; o_z += mult * offsetz; } } if (first || refirst) { point_x = barbValues[2]; point_y = barbValues[3]; point_z = 0.0f; line_x = 0.0f; line_y = 0.0f; line_z = 1.0f; // lineAxis == 2 in DataRenderer.drag_direct } // end if (first || refirst) float[] x = new float[3]; // x marks the spot // DirectManifoldDimension = 2 // intersect ray with plane float dot = (point_x - o_x) * line_x + (point_y - o_y) * line_y + (point_z - o_z) * line_z; float dot2 = d_x * line_x + d_y * line_y + d_z * line_z; if (dot2 == 0.0) return; dot = dot / dot2; // x is intersection x[0] = o_x + dot * d_x; x[1] = o_y + dot * d_y; x[2] = o_z + dot * d_z; /* System.out.println("x = " + x[0] + " " + x[1] + " " + x[2]); */ try { Tuple data = (Tuple) link.getData(); int n = ((TupleType) data.getType()).getNumberOfRealComponents(); Real[] reals = new Real[n]; int k = 0; int m = data.getDimension(); for (int i = 0; i < m; i++) { Data component = data.getComponent(i); if (component instanceof Real) { reals[k++] = (Real) component; } else if (component instanceof RealTuple) { for (int j = 0; j < ((RealTuple) component).getDimension(); j++) { reals[k++] = (Real) ((RealTuple) component).getComponent(j); } } } if (first || refirst) { // get first Data flow vector for (int i = 0; i < 3; i++) { int j = flowToComponent[i]; data_flow[i] = (j >= 0) ? (float) reals[j].getValue() : 0.0f; } if (coord != null) { float[][] ds = {{data_flow[0]}, {data_flow[1]}, {data_flow[2]}}; ds = coord.toReference(ds); data_flow[0] = ds[0][0]; data_flow[1] = ds[1][0]; data_flow[2] = ds[2][0]; } data_speed = (float) Math.sqrt( data_flow[0] * data_flow[0] + data_flow[1] * data_flow[1] + data_flow[2] * data_flow[2]); float barb0 = barbValues[2] - barbValues[0]; float barb1 = barbValues[3] - barbValues[1]; /* System.out.println("data_flow = " + data_flow[0] + " " + data_flow[1] + " " + data_flow[2]); System.out.println("barbValues = " + barbValues[0] + " " + barbValues[1] + " " + barbValues[2] + " " + barbValues[3]); System.out.println("data_speed = " + data_speed); */ } // end if (first || refirst) // convert x to a flow vector, and from spatial to earth if (getRealVectorTypes(which_barb) instanceof EarthVectorType) { // don't worry about vector magnitude - // data_speed & display_speed take care of that float eps = 0.0001f; // estimate derivative with a little vector float[][] spatial_locs = { {barbValues[0], barbValues[0] + eps * (x[0] - barbValues[0])}, {barbValues[1], barbValues[1] + eps * (x[1] - barbValues[1])}, {0.0f, 0.0f} }; /* System.out.println("spatial_locs = " + spatial_locs[0][0] + " " + spatial_locs[0][1] + " " + spatial_locs[1][0] + " " + spatial_locs[1][1]); */ float[][] earth_locs = spatialToEarth(spatial_locs); // WLH - 18 Aug 99 if (earth_locs == null) return; /* System.out.println("earth_locs = " + earth_locs[0][0] + " " + earth_locs[0][1] + " " + earth_locs[1][0] + " " + earth_locs[1][1]); */ x[2] = 0.0f; x[0] = (earth_locs[1][1] - earth_locs[1][0]) * ((float) Math.cos(Data.DEGREES_TO_RADIANS * earth_locs[0][0])); x[1] = earth_locs[0][1] - earth_locs[0][0]; /* System.out.println("x = " + x[0] + " " + x[1] + " " + x[2]); */ } else { // if (!(getRealVectorTypes(which_barb) instanceof EarthVectorType)) // convert x to vector x[0] -= barbValues[0]; x[1] -= barbValues[1]; // adjust for spatial map scalings but don't worry about vector // magnitude - data_speed & display_speed take care of that // also, spatial is Cartesian double[] ranges = getRanges(); for (int i = 0; i < 3; i++) { x[i] /= ranges[i]; } /* System.out.println("ranges = " + ranges[0] + " " + ranges[1] + " " + ranges[2]); System.out.println("x = " + x[0] + " " + x[1] + " " + x[2]); */ } // WLH 6 August 99 x[0] = -x[0]; x[1] = -x[1]; x[2] = -x[2]; /* may need to do this for performance float[] xx = {x[0], x[1], x[2]}; addPoint(xx); */ float x_speed = (float) Math.sqrt(x[0] * x[0] + x[1] * x[1] + x[2] * x[2]); /* WLH 16 April 2002 - from Ken if (x_speed < 0.000001f) x_speed = 0.000001f; */ if (x_speed < 0.01f) x_speed = 0.01f; if (first || refirst) { display_speed = x_speed; } refirst = false; if (mshift != 0) { // only modify data_flow direction float ratio = data_speed / x_speed; x[0] *= ratio; x[1] *= ratio; x[2] *= ratio; /* System.out.println("direction, ratio = " + ratio + " " + data_speed + " " + x_speed); System.out.println("x = " + x[0] + " " + x[1] + " " + x[2]); */ } else if (mctrl != 0) { // only modify data_flow speed float ratio = x_speed / display_speed; if (data_speed < EPS) { data_flow[0] = 2.0f * EPS; refirst = true; } x[0] = ratio * data_flow[0]; x[1] = ratio * data_flow[1]; x[2] = ratio * data_flow[2]; /* System.out.println("speed, ratio = " + ratio + " " + x_speed + " " + display_speed); System.out.println("x = " + x[0] + " " + x[1] + " " + x[2]); */ } else { // modify data_flow speed and direction float ratio = data_speed / display_speed; /* System.out.println("data_speed = " + data_speed + " display_speed = " + display_speed + " ratio = " + ratio + " EPS = " + EPS); System.out.println("x = " + x[0] + " " + x[1] +" " + x[2] + " x_speed = " + x_speed); data_speed = 21.213203 display_speed = 0.01 ratio = 2121.3203 EPS = 0.2 x = 1.6170928E-4 1.6021729E-4 -0.0 x_speed = 0.01 wind = (0.3430372, 0.33987218) at (-35.0, 5.0) */ if (data_speed < EPS) { data_flow[0] = 2.0f * EPS; x[0] = data_flow[0]; x[1] = data_flow[1]; x[2] = data_flow[2]; refirst = true; } else { x[0] *= ratio; x[1] *= ratio; x[2] *= ratio; } } if (coord != null) { float[][] xs = {{x[0]}, {x[1]}, {x[2]}}; xs = coord.fromReference(xs); x[0] = xs[0][0]; x[1] = xs[1][0]; x[2] = xs[2][0]; } // now replace flow values Vector vect = new Vector(); for (int i = 0; i < 3; i++) { int j = flowToComponent[i]; if (j >= 0) { RealType rtype = (RealType) reals[j].getType(); reals[j] = new Real(rtype, (double) x[i], rtype.getDefaultUnit(), null); // WLH 31 Aug 2000 Real r = reals[j]; Unit overrideUnit = null; if (directMap[i] != null) { overrideUnit = directMap[i].getOverrideUnit(); } Unit rtunit = rtype.getDefaultUnit(); // units not part of Time string if (overrideUnit != null && !overrideUnit.equals(rtunit) && !RealType.Time.equals(rtype)) { double d = (float) overrideUnit.toThis((double) x[0], rtunit); r = new Real(rtype, d, overrideUnit); String valueString = r.toValueString(); vect.addElement(rtype.getName() + " = " + valueString); } else { // create location string vect.addElement(rtype.getName() + " = " + x[i]); } } } getDisplayRenderer().setCursorStringVector(vect); Data newData = null; // now build new RealTuple or Flat Tuple if (data instanceof RealTuple) { newData = new RealTuple( ((RealTupleType) data.getType()), reals, ((RealTuple) data).getCoordinateSystem()); } else { Data[] new_components = new Data[m]; k = 0; for (int i = 0; i < m; i++) { Data component = data.getComponent(i); if (component instanceof Real) { new_components[i] = reals[k++]; } else if (component instanceof RealTuple) { Real[] sub_reals = new Real[((RealTuple) component).getDimension()]; for (int j = 0; j < ((RealTuple) component).getDimension(); j++) { sub_reals[j] = reals[k++]; } new_components[i] = new RealTuple( ((RealTupleType) component.getType()), sub_reals, ((RealTuple) component).getCoordinateSystem()); } } newData = new Tuple(new_components, false); } ref.setData(newData); } catch (VisADException e) { // do nothing System.out.println("drag_direct " + e); e.printStackTrace(); } catch (RemoteException e) { // do nothing System.out.println("drag_direct " + e); e.printStackTrace(); } }