Exemplo n.º 1
0
  public void randomwalk(int v) {
    // weighted random walk
    RandomWalk rw = new RandomWalk(p_w);
    int status = rw.stay_move();
    ArrayList<Integer> walkpath = new ArrayList<Integer>();
    Integer u = v;
    walkpath.add(v);
    while (status == 1) // keep moving until status = 0
    {
      u = rw.move(G, u);
      if (u == null) // no neighbors
      break;
      if (!walkpath.contains(u)) walkpath.add(u);
      status = rw.stay_move();
    }
    //		System.out.println("walking length: "+ Integer.toString(walkpath.size()));

    for (int i = 0; i < walkpath.size(); i++)
      for (int j = i + 1; j < walkpath.size(); j++) {
        int m = walkpath.get(i);
        int n = walkpath.get(j);
        if (!G.containsEdge(m, n)) {
          double distance = Math.abs(socialposition.get(m) - socialposition.get(n));
          double prob = linkprob(distance, (j - i));
          if (random.nextDouble() < prob) {
            G.setEdgeWeight((DefaultWeightedEdge) G.addEdge(m, n), 1);
          }
        } else {
          DefaultWeightedEdge edge = G.getEdge(m, n);
          G.setEdgeWeight(edge, G.getEdgeWeight(edge) + 1);
        }
      }
    return;
  }
Exemplo n.º 2
0
 // global attachment -- with prob 1
 public void globalattach(int v) throws IOException {
   Integer u = random.nextInt(N);
   while (u == v) u = random.nextInt(N);
   if (!G.containsEdge(v, u)) {
     G.setEdgeWeight((DefaultWeightedEdge) G.addEdge(v, u), 1);
   } else {
     DefaultWeightedEdge edge = G.getEdge(v, u);
     G.setEdgeWeight(edge, G.getEdgeWeight(edge) + 1);
   }
 }
  /**
   * Add edges connecting this cell and its 8 (or less) neighbors
   *
   * @param row
   * @param col
   */
  private void addEdges(int row, int col) {
    System.out.println("Adding (" + row + ", " + col + ")");
    // Add weighted edge
    // North
    if (row > 0 && g.containsVertex(cellContainer[row][col])) {
      g.addEdge(cellContainer[row][col], cellContainer[row - 1][col]);
      g.setEdgeWeight(g.getEdge(cellContainer[row][col], cellContainer[row - 1][col]), 1);
      // NE
      if (col < colCount - 1 && g.containsVertex(cellContainer[row - 1][col + 1])) {
        g.addEdge(cellContainer[row][col], cellContainer[row - 1][col + 1]);
        g.setEdgeWeight(
            g.getEdge(cellContainer[row][col], cellContainer[row - 1][col + 1]), Math.sqrt(2.0));
      }
    }

    // East
    if (col < colCount - 1 && g.containsVertex(cellContainer[row][col + 1])) {
      g.addEdge(cellContainer[row][col], cellContainer[row][col + 1]);
      g.setEdgeWeight(g.getEdge(cellContainer[row][col], cellContainer[row][col + 1]), 1);

      // SE
      if (row < rowCount - 1 && g.containsVertex(cellContainer[row + 1][col + 1])) {
        g.addEdge(cellContainer[row][col], cellContainer[row + 1][col + 1]);
        g.setEdgeWeight(
            g.getEdge(cellContainer[row][col], cellContainer[row + 1][col + 1]), Math.sqrt(2.0));
      }
    }

    // South
    if (row < rowCount - 1 && g.containsVertex(cellContainer[row + 1][col])) {
      g.addEdge(cellContainer[row][col], cellContainer[row + 1][col]);
      g.setEdgeWeight(g.getEdge(cellContainer[row][col], cellContainer[row + 1][col]), 1);

      // SW
      if (col > 0 && g.containsVertex(cellContainer[row + 1][col - 1])) {
        g.addEdge(cellContainer[row][col], cellContainer[row + 1][col - 1]);
        g.setEdgeWeight(
            g.getEdge(cellContainer[row][col], cellContainer[row + 1][col - 1]), Math.sqrt(2.0));
      }
    }

    // West
    if (col > 0 && g.containsVertex(cellContainer[row][col - 1])) {
      g.addEdge(cellContainer[row][col], cellContainer[row][col - 1]);
      g.setEdgeWeight(g.getEdge(cellContainer[row][col], cellContainer[row][col - 1]), 1);

      // NW
      if (row > 0 && g.containsVertex(cellContainer[row - 1][col - 1])) {
        g.addEdge(cellContainer[row][col], cellContainer[row - 1][col - 1]);
        g.setEdgeWeight(
            g.getEdge(cellContainer[row][col], cellContainer[row - 1][col - 1]), Math.sqrt(2.0));
      }
    }
  }
  /**
   * Compute the log-probability that each observation arises for each ant. This is represented by a
   * simple weighted graph, where the absence of an edge represents zero probability that the given
   * observation was caused by the given ant. Currently the log-prob is set to be a truncated iid
   * Gaussian around an ant location.
   *
   * @param probabilityGraph The probability graph being constructed.
   * @param edgeMap A sorted map of the edges in probabilityGraph.
   * @param thisObservedPosMap Observed points along with index.
   * @param thisParticlePosMap Current particle locations.
   * @param obsSums
   * @param antSums
   * @return Sum of edge weights
   */
  private double computeLogProbabilityGraph(
      SimpleWeightedGraph<Vertex, DefaultWeightedComparableEdge> probabilityGraph,
      ValueSortedMap<DefaultWeightedComparableEdge, Double> edgeMap,
      HashMap<Vertex, Point> thisObservedPosMap,
      HashMap<Vertex, AntPath> thisParticlePathMap) {
    /** Initialize vertices. */
    edgeMap.clear();

    probabilityGraph.addVertex(falseNegative);
    probabilityGraph.addVertex(falsePositive);

    for (Vertex v : thisObservedPosMap.keySet()) {
      probabilityGraph.addVertex(v);
      DefaultWeightedComparableEdge edge = probabilityGraph.addEdge(v, falsePositive);
      probabilityGraph.setEdgeWeight(edge, falsePositiveLogProb);
      edgeMap.put(edge, falsePositiveLogProb);
    }
    for (Vertex v : thisParticlePathMap.keySet()) {
      probabilityGraph.addVertex(v);
      DefaultWeightedComparableEdge edge = probabilityGraph.addEdge(v, falseNegative);
      probabilityGraph.setEdgeWeight(edge, falseNegativeLogProb);
      edgeMap.put(edge, falseNegativeLogProb);
    }

    /** Compute probability of each observation given each ant path */
    for (Entry<Vertex, Point> obsEntry : thisObservedPosMap.entrySet()) {
      for (Entry<Vertex, AntPath> parEntry : thisParticlePathMap.entrySet()) {
        double logprob = observationLogProbGivenAntPath(obsEntry.getValue(), parEntry.getValue());
        if (logprob > logProbThreshold) {
          DefaultWeightedComparableEdge edge =
              probabilityGraph.addEdge(obsEntry.getKey(), parEntry.getKey());
          probabilityGraph.setEdgeWeight(edge, logprob);
          edgeMap.put(edge, logprob);
        }
      }
    }

    /** Adjust probabilities according to log-probability of an AntPath existing. */
    for (Entry<Vertex, AntPath> antEntry : thisParticlePathMap.entrySet()) {
      Set<DefaultWeightedComparableEdge> edge = probabilityGraph.edgesOf(antEntry.getKey());
      double antProb = antEntry.getValue().getCurrentLogProb();
      for (DefaultWeightedComparableEdge e : edge) {
        double ew = probabilityGraph.getEdgeWeight(e);
        probabilityGraph.setEdgeWeight(e, ew + antProb);
        // edgeMap.remove(edge);
        edgeMap.put(e, ew + antProb);
      }
    }

    /**
     * ANG -- to do Interaction effects: -- probability of false negative higher when multiple ants
     * in same area. however, there is a high probability that there will be SOME observation in the
     * area. -- probability of a false positive higher when there is one ant in a region. this is
     * because sometimes one ant is split into two.
     */

    /** compute vertex sums */
    // Utils.computeVertexSums(probabilityGraph);
    double totalLogProb = Utils.maxstar(edgeMap);

    return totalLogProb;
  }
Exemplo n.º 5
0
  // Calculate the contribution of current vertex's shortest-path graph to final edge betweenness
  // (Newman algorithm)
  // M. E. J. Newman and M. Girvan, Finding and evaluating community structure in networks, Physical
  // Review E69, 026113 (2004)
  private SimpleWeightedGraph<String, DefaultWeightedEdge> NewmanAlgorithm(
      Multigraph<String, DefaultEdge> shortestPathGraph, String thisVertex) {

    if (shortestPathGraph.edgeSet().size() == 0) // No outer degree
    return null;

    // 1. Initialize the edge betweenness digraph
    SimpleWeightedGraph<String, DefaultWeightedEdge> edgeBetweennessDigraph =
        new SimpleWeightedGraph<String, DefaultWeightedEdge>(DefaultWeightedEdge.class);
    // Add vertices
    for (String curVertex : shortestPathGraph.vertexSet())
      edgeBetweennessDigraph.addVertex(curVertex);

    // 2. Deal with corresponding edges
    // 2.1. Calculate vertex distance and weight
    // 2.1.1. Initialize related variables
    HashMap<String, Integer> mapVertexDistance = new HashMap<String, Integer>(); // Vertex distance
    for (String curVertex : shortestPathGraph.vertexSet()) mapVertexDistance.put(curVertex, 0);
    HashMap<String, Double> mapVertexWeight = new HashMap<String, Double>(); // Vertex weight
    for (String curVertex : shortestPathGraph.vertexSet()) mapVertexWeight.put(curVertex, 1.0);
    Queue<String> verticesQueue = new LinkedList<String>(); // Store the queue of operated vertices
    // 2.1.2. Traverse the shortest-path digraph, get corresponding vertex distance and weight
    verticesQueue.add(thisVertex);
    String currentVertex = thisVertex;
    while (!verticesQueue.isEmpty()) {
      // 2.1.2.1. Read the bottom vertex in the queue, deal with all adjacent edges
      for (DefaultEdge curEdge : shortestPathGraph.edgesOf(currentVertex)) {
        String targetVertex = shortestPathGraph.getEdgeTarget(curEdge);
        if (mapVertexDistance.get(targetVertex)
            == 0) { // Target vertex value hasn't been evaluated yet
          mapVertexDistance.put(targetVertex, mapVertexDistance.get(currentVertex) + 1);
          mapVertexWeight.put(targetVertex, mapVertexWeight.get(currentVertex));
          verticesQueue.add(targetVertex);
        }
        // Target vertex value has already been set to source vertex distance plus 1
        else if (mapVertexDistance.get(targetVertex) == (mapVertexDistance.get(currentVertex) + 1))
          mapVertexWeight.put(
              targetVertex, mapVertexWeight.get(targetVertex) + mapVertexWeight.get(currentVertex));
      }
      // 2.1.2.2. All adjacent edges have been treated, remove the bottom element
      verticesQueue.remove();
      currentVertex = verticesQueue.peek();
    }

    // 2.2. Calculate the contribution of every edges to the edge betweenness
    // 2.2.1. Sort the vertices descendingly by the distance to the first vertex
    List<Map.Entry<String, Integer>> listVertexDistance =
        new ArrayList<Map.Entry<String, Integer>>(mapVertexDistance.entrySet());
    Collections.sort(
        listVertexDistance,
        new Comparator<Map.Entry<String, Integer>>() { // Sorting the list descendingly

          @Override
          public int compare(Entry<String, Integer> o1, Entry<String, Integer> o2) {
            return (o2.getValue().compareTo(o1.getValue()));
          }
        });
    // 2.2.2. Traverse the shortest-path digraph with the sorted vertices list
    for (Map.Entry<String, Integer> thisVertexDistance : listVertexDistance) {
      currentVertex = thisVertexDistance.getKey();
      for (DefaultEdge curEdge : shortestPathGraph.edgesOf(currentVertex)) {
        // 2.2.2.1. Get the source vertex
        String sourceVertex = shortestPathGraph.getEdgeSource(curEdge);
        String targetVertex = shortestPathGraph.getEdgeTarget(curEdge);
        String anotherVertex = "";
        if (currentVertex.equals(sourceVertex)) anotherVertex = targetVertex;
        else if (currentVertex.equals(targetVertex)) anotherVertex = sourceVertex;
        // 2.2.2.2. Calculate the value of the sum of all adjacent edges plus 1
        double totalSubWeights = 1.0;
        for (DefaultWeightedEdge curSubEdge : edgeBetweennessDigraph.edgesOf(currentVertex))
          totalSubWeights += edgeBetweennessDigraph.getEdgeWeight(curSubEdge);
        // 2.2.2.3. The new edge weight is calculated as totalSubWeights * (the quotient of the
        // weights of the two terminals)
        double wi = mapVertexWeight.get(anotherVertex);
        double wj = mapVertexWeight.get(currentVertex);
        totalSubWeights /= wi / wj;
        // 2.2.2.4. Add new edge with correct weight into the edge betweenness digraph
        DefaultWeightedEdge newEdge = new DefaultWeightedEdge();
        edgeBetweennessDigraph.addEdge(anotherVertex, currentVertex, newEdge);
        edgeBetweennessDigraph.setEdgeWeight(newEdge, totalSubWeights);
      }
    }

    return edgeBetweennessDigraph;
  }
Exemplo n.º 6
0
  // Create shortest-path graph for every vertex by depth-first traversal algorithm
  private Multigraph<String, DefaultEdge> DijkstraAlgorithm(
      WeightedMultigraph<String, DefaultWeightedEdge> originalGraph, String thisVertex) {

    // 1. Simplify the multi-graph of the active power flow into a simple graph
    SimpleWeightedGraph<String, DefaultWeightedEdge> originalSimpleGraph =
        new SimpleWeightedGraph<String, DefaultWeightedEdge>(DefaultWeightedEdge.class);
    for (String curVertex : originalGraph.vertexSet()) originalSimpleGraph.addVertex(curVertex);
    for (DefaultWeightedEdge curEdge : originalGraph.edgeSet()) {
      String sourceVertex = originalGraph.getEdgeSource(curEdge);
      String targetVertex = originalGraph.getEdgeTarget(curEdge);
      if (originalSimpleGraph.containsEdge(sourceVertex, targetVertex)) {
        DefaultWeightedEdge modifiedEdge = originalSimpleGraph.getEdge(sourceVertex, targetVertex);
        double newEdgeWeight =
            originalSimpleGraph.getEdgeWeight(modifiedEdge) + originalGraph.getEdgeWeight(curEdge);
        originalSimpleGraph.setEdgeWeight(modifiedEdge, newEdgeWeight);
      } else {
        DefaultWeightedEdge newEdge = new DefaultWeightedEdge();
        originalSimpleGraph.addEdge(sourceVertex, targetVertex, newEdge);
        originalSimpleGraph.setEdgeWeight(newEdge, originalGraph.getEdgeWeight(curEdge));
      }
    }
    // Issue (2010/10/25): Maybe larger amount of active power transfer still means weaker
    // relationship between the two terminal buses of a certain branch,
    // thus originalSimpleGraph other than inverseGraph should be used here.
    // Use the inverse of active power to build a new weighted directed graph (the larger the active
    // power is, the close the two buses will be)
    //		SimpleDirectedWeightedGraph<String, DefaultWeightedEdge> inverseGraph =
    //			new SimpleDirectedWeightedGraph<String, DefaultWeightedEdge>(DefaultWeightedEdge.class);
    //		for (String curVertex : originalSimpleGraph.vertexSet())
    //			inverseGraph.addVertex(curVertex);
    //		for (DefaultWeightedEdge curEdge : originalSimpleGraph.edgeSet()) {
    //			String sourceVertex = originalSimpleGraph.getEdgeSource(curEdge);
    //			String targetVertex = originalSimpleGraph.getEdgeTarget(curEdge);
    //			DefaultWeightedEdge newEdge = new DefaultWeightedEdge();
    //			inverseGraph.addEdge(sourceVertex, targetVertex, newEdge);
    //			inverseGraph.setEdgeWeight(newEdge, 1 / originalSimpleGraph.getEdgeWeight(curEdge));
    //		}
    // 2. Initialize the map of vertices and the corresponding weights (distance from current vertex
    // to the first vertex)
    HashMap<String, Double> mapVertexShortestDistance = new HashMap<String, Double>();
    //		for (String thisOriginalVertex : inverseGraph.vertexSet())
    for (String thisOriginalVertex : originalSimpleGraph.vertexSet())
      mapVertexShortestDistance.put(thisOriginalVertex, 10E10);
    // The weight of the first vertex is zero
    mapVertexShortestDistance.put(thisVertex, 0.0);

    // 3. Depth-first traversing, update the shortest-path values
    Stack<String> bfiVertices =
        new Stack<String>(); // Stack to store passed vertices in a breadth-first traversing
    // The map of a weighted edge and the flag of having been visited
    //		HashMap<DefaultWeightedEdge, Boolean> mapEdgeVisited = new HashMap<DefaultWeightedEdge,
    // Boolean>();
    //		for (DefaultWeightedEdge thisEdge : inverseGraph.edgeSet())
    //			mapEdgeVisited.put(thisEdge, false);
    String currentVertex = thisVertex;
    bfiVertices.push(currentVertex);
    //		System.out.println(bfiVertices.toString());
    while (!bfiVertices.isEmpty()) {
      // Operate the following codes for those edges started with current vertex
      boolean hasNewEdge = false;
      //			for (DefaultWeightedEdge curEdge : inverseGraph.outgoingEdgesOf(currentVertex)) {
      for (DefaultWeightedEdge curEdge : originalSimpleGraph.edgesOf(currentVertex)) {
        //				if (!mapEdgeVisited.get(curEdge)) {	// Used for those edges that have not been treated
        // yet
        // 3.1. Mark current edge as already been visited
        //					mapEdgeVisited.put(curEdge, true);
        //				String nextVertex = inverseGraph.getEdgeTarget(curEdge);
        String nextVertex = originalSimpleGraph.getEdgeTarget(curEdge);
        // 3.2. Update shortest-path values
        double curSD = mapVertexShortestDistance.get(currentVertex);
        //					double edgeWeight = inverseGraph.getEdgeWeight(curEdge);
        double edgeWeight = originalSimpleGraph.getEdgeWeight(curEdge);
        double newSD = curSD + edgeWeight;
        if (mapVertexShortestDistance.get(nextVertex) > newSD) {
          hasNewEdge = true;
          mapVertexShortestDistance.put(nextVertex, newSD);
          // 3.3. Push the target vertex of current edge into the stack
          bfiVertices.push(nextVertex);
          //						System.out.println(bfiVertices.toString());
          break;
          //						System.out.println("New shortest path [" + nextVertex + "]: " + newSD);
        }
        //				}
      }
      if (!hasNewEdge) {
        bfiVertices.pop();
      }
      if (!bfiVertices.isEmpty()) currentVertex = bfiVertices.peek();
    }
    // 4. Create shortest-path digraph of current vertex
    // 4.1. Initialize the shortest-path digraph
    Multigraph<String, DefaultEdge> shortestPathGraph =
        new Multigraph<String, DefaultEdge>(DefaultEdge.class);
    // 4.2. Add all qualified edges
    //		for (DefaultWeightedEdge curEdge : inverseGraph.edgeSet()) {
    for (DefaultWeightedEdge curEdge : originalSimpleGraph.edgeSet()) {
      // 4.2.1. Evaluate if current edge is suitable
      //			String sourceVertex = inverseGraph.getEdgeSource(curEdge);
      //			String targetVertex = inverseGraph.getEdgeTarget(curEdge);
      String sourceVertex = originalSimpleGraph.getEdgeSource(curEdge);
      String targetVertex = originalSimpleGraph.getEdgeTarget(curEdge);
      //			if (Math.abs(inverseGraph.getEdgeWeight(curEdge) -
      if (originalSimpleGraph.getEdgeWeight(curEdge) > 1.0E-5) {
        if (Math.abs(
                originalSimpleGraph.getEdgeWeight(curEdge)
                    - (mapVertexShortestDistance.get(targetVertex)
                        - mapVertexShortestDistance.get(sourceVertex)))
            < 1.0E-5) {
          // 4.2.2. Add suitable edge that found just now
          DefaultEdge newEdge = new DefaultEdge();
          if (!shortestPathGraph.containsVertex(sourceVertex))
            shortestPathGraph.addVertex(sourceVertex);
          if (!shortestPathGraph.containsVertex(targetVertex))
            shortestPathGraph.addVertex(targetVertex);
          shortestPathGraph.addEdge(sourceVertex, targetVertex, newEdge);
        }
      }
    }
    return shortestPathGraph;
  }
Exemplo n.º 7
0
  /**
   * Reads the geometry and connectivity.
   *
   * @param filename the location of the gjf file
   */
  public GJFfile(String filename) {
    super(filename);

    // read geometry
    String name = "";
    List<Atom> contents = new ArrayList<>();
    SimpleWeightedGraph<Atom, DefaultWeightedEdge> connectivity =
        new SimpleWeightedGraph<>(DefaultWeightedEdge.class);
    int blanks = 0;
    boolean lastBlank = false;
    boolean inGeometryBlock = false;
    for (List<String> line : fileContents) {
      // keep track of how many blanks we have seen
      if (line.size() == 1 && line.get(0).length() == 0) {
        if (lastBlank == false) {
          blanks++;
          lastBlank = true;
        }
        continue;
      } else lastBlank = false;

      // read the metadata
      if (blanks == 1) {
        for (String s : line) {
          String[] fields = s.split("@");
          if (fields.length != 3) continue;
          String identifier = fields[1].toLowerCase();
          String value = fields[2];
          // System.out.println(s);
          // System.out.println(identifier + " : " + value);

          if (identifier.equals("o1")) O1Number = Integer.parseInt(value);
          else if (identifier.equals("o2")) O2Number = Integer.parseInt(value);
          else if (identifier.equals("n3")) N3Number = Integer.parseInt(value);
          else if (identifier.equals("cl1")) Cl1Number = Integer.parseInt(value);
          else if (identifier.equals("su2")) Su2Number = Integer.parseInt(value);
          else if (identifier.equals("ol3")) Ol3Number = Integer.parseInt(value);
          else if (identifier.equals("mem")) mem = Integer.parseInt(value);
          else if (identifier.equals("nprocshared")) nprocshared = Integer.parseInt(value);
          else if (identifier.equals("method")) method = value;
          else if (identifier.equals("basis")) basis = value;
          else System.out.println("unrecognized entry: " + s);
        }

        continue;
      } else if (blanks != 2) continue;

      // deal with the charge and multiplicity card (by ignoring it)
      if (line.size() == 2 && inGeometryBlock == false) {
        inGeometryBlock = true;
        continue;
      }

      if (line.size() != 4 && inGeometryBlock == false)
        throw new IllegalArgumentException(
            "unexpected text in geometry block in " + filename + ":\n" + line.toString());

      // create atom
      // tinker atom types will be nonsense, of course
      Atom newAtom =
          new Atom(
              line.get(0),
              new Vector3D(
                  Double.parseDouble(line.get(1)),
                  Double.parseDouble(line.get(2)),
                  Double.parseDouble(line.get(3))),
              1);
      contents.add(newAtom);
      connectivity.addVertex(newAtom);
    }

    // read connectivity
    blanks = 0;
    lastBlank = false;
    for (List<String> line : fileContents) {
      // read the fourth block of text
      if (line.size() == 1 && line.get(0).length() == 0) {
        if (lastBlank == false) {
          blanks++;
          lastBlank = true;
        }
        continue;
      } else lastBlank = false;

      // only read connectivity lines
      if (blanks != 3) continue;

      Atom fromAtom = contents.get(Integer.parseInt(line.get(0)) - 1);
      for (int i = 1; i < line.size(); i += 2) {
        int toAtomIndex = Integer.parseInt(line.get(i)) - 1;
        Atom toAtom = contents.get(toAtomIndex);
        double bondOrder = Double.parseDouble(line.get(i + 1));
        DefaultWeightedEdge thisEdge = connectivity.addEdge(fromAtom, toAtom);
        connectivity.setEdgeWeight(thisEdge, bondOrder);
      }
    }

    // create the molecule
    molecule = new Molecule(name, contents, connectivity, 0.0);
  }