/**
  * Computes the correlation matrix for the columns of the input matrix.
  *
  * @param matrix matrix with columns representing variables to correlate
  * @return correlation matrix
  */
 public RealMatrix computeCorrelationMatrix(RealMatrix matrix) {
   int nVars = matrix.getColumnDimension();
   RealMatrix outMatrix = new BlockRealMatrix(nVars, nVars);
   for (int i = 0; i < nVars; i++) {
     for (int j = 0; j < i; j++) {
       double corr = correlation(matrix.getColumn(i), matrix.getColumn(j));
       outMatrix.setEntry(i, j, corr);
       outMatrix.setEntry(j, i, corr);
     }
     outMatrix.setEntry(i, i, 1d);
   }
   return outMatrix;
 }
 /**
  * Derives a correlation matrix from a covariance matrix.
  *
  * <p>Uses the formula <br>
  * <code>r(X,Y) = cov(X,Y)/s(X)s(Y)</code> where <code>r(&middot,&middot;)</code> is the
  * correlation coefficient and <code>s(&middot;)</code> means standard deviation.
  *
  * @param covarianceMatrix the covariance matrix
  * @return correlation matrix
  */
 public RealMatrix covarianceToCorrelation(RealMatrix covarianceMatrix) {
   int nVars = covarianceMatrix.getColumnDimension();
   RealMatrix outMatrix = new BlockRealMatrix(nVars, nVars);
   for (int i = 0; i < nVars; i++) {
     double sigma = Math.sqrt(covarianceMatrix.getEntry(i, i));
     outMatrix.setEntry(i, i, 1d);
     for (int j = 0; j < i; j++) {
       double entry =
           covarianceMatrix.getEntry(i, j) / (sigma * Math.sqrt(covarianceMatrix.getEntry(j, j)));
       outMatrix.setEntry(i, j, entry);
       outMatrix.setEntry(j, i, entry);
     }
   }
   return outMatrix;
 }
Exemplo n.º 3
0
 public static void main(String[] args) {
   RealMatrix coefficients2 =
       new Array2DRowRealMatrix(
           new double[][] {
             {0.0D, 1.0D, 0.0D, 0.0D, 0.0D, 0.0D, 0.0D, 0.0D, 0.0D, 0.0D, 0.0D},
             {0.0D, 0.0D, 0.857D, 0.0D, 0.054D, 0.018D, 0.0D, 0.071D, 0.0D, 0.0D, 0.0D},
             {0.0D, 0.0D, 0.0D, 1.0D, 0.0D, 0.0D, 0.0D, 0.0D, 0.0D, 0.0D, 0.0D},
             {0.0D, 0.0D, 0.857D, 0.0D, 0.054D, 0.018D, 0.0D, 0.071D, 0.0D, 0.0D, 0.0D},
             {0.0D, 0.0D, 0.0D, 0.0D, 0.0D, 0.0D, 1.0D, 0.0D, 0.0D, 0.0D, 0.0D},
             {0.0D, 0.0D, 0.0D, 0.0D, 0.0D, 0.0D, 1.0D, 0.0D, 0.0D, 0.0D, 0.0D},
             {0.0D, 0.0D, 0.0D, 0.0D, 0.0D, 0.0D, 0.0D, 0.0D, 1.0D, 0.0D, 0.0D},
             {0.0D, 0.0D, 0.0D, 0.0D, 0.0D, 0.0D, 0.0D, 0.0D, 0.0D, 0.6D, 0.4D},
             {0.0D, 0.0D, 0.0D, 0.0D, 0.0D, 0.0D, 0.0D, 0.0D, 0.0D, 0.0D, 1.0D},
             {0.0D, 0.0D, 0.0D, 0.0D, 0.0D, 0.0D, 0.0D, 1.0D, 0.0D, 0.0D, 1.0D},
             {0.0D, 0.0D, 0.0D, 0.0D, 0.0D, 0.0D, 0.0D, 0.0D, 0.0D, 0.0D, 0.0D}
           },
           false);
   for (int i = 0; i < 11; i++) {
     coefficients2.setEntry(i, i, -1d);
   }
   coefficients2 = coefficients2.transpose();
   DecompositionSolver solver = new LUDecompositionImpl(coefficients2).getSolver();
   System.out.println("1 method my Value :");
   RealVector constants =
       new ArrayRealVector(new double[] {-1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, false);
   RealVector solution = solver.solve(constants);
   double[] data = solution.getData();
   DecimalFormat df = new DecimalFormat();
   df.setRoundingMode(RoundingMode.DOWN);
   System.out.println("Корни уравнения:");
   for (double dd : data) {
     System.out.print(df.format(dd) + " ");
   }
   System.out.println();
   System.out.println(
       "Среднее число процессорных операций, выполняемых при одном прогоне алгоритма: "
           + operationsByProcess(data, arr));
   System.out.println("Среднее число обращений к файлам:");
   for (int i = 1; i < 4; i++) {
     System.out.println("  Файл " + i + " : " + fileMiddleRequest(data, arr, i));
   }
   System.out.println("Среднее количество информации передаваемой при одном обращении к файлам:");
   for (int i = 1; i < 4; i++) {
     System.out.println("  Файл " + i + " : " + bitsPerFileTransfer(data, arr, i));
   }
   System.out.println(
       "Сумма среднего числа обращений к основным операторам: " + operatorExecute(data, arr));
   System.out.println("Средняя трудоемкость этапа: " + middleWork(data, arr));
 }
Exemplo n.º 4
0
  /**
   * Solve an estimation problem using a least squares criterion.
   *
   * <p>This method set the unbound parameters of the given problem starting from their current
   * values through several iterations. At each step, the unbound parameters are changed in order to
   * minimize a weighted least square criterion based on the measurements of the problem.
   *
   * <p>The iterations are stopped either when the criterion goes below a physical threshold under
   * which improvement are considered useless or when the algorithm is unable to improve it (even if
   * it is still high). The first condition that is met stops the iterations. If the convergence it
   * not reached before the maximum number of iterations, an {@link EstimationException} is thrown.
   *
   * @param problem estimation problem to solve
   * @exception EstimationException if the problem cannot be solved
   * @see EstimationProblem
   */
  @Override
  public void estimate(EstimationProblem problem) throws EstimationException {

    initializeEstimate(problem);

    // work matrices
    double[] grad = new double[parameters.length];
    ArrayRealVector bDecrement = new ArrayRealVector(parameters.length);
    double[] bDecrementData = bDecrement.getDataRef();
    RealMatrix wGradGradT = MatrixUtils.createRealMatrix(parameters.length, parameters.length);

    // iterate until convergence is reached
    double previous = Double.POSITIVE_INFINITY;
    do {

      // build the linear problem
      incrementJacobianEvaluationsCounter();
      RealVector b = new ArrayRealVector(parameters.length);
      RealMatrix a = MatrixUtils.createRealMatrix(parameters.length, parameters.length);
      for (int i = 0; i < measurements.length; ++i) {
        if (!measurements[i].isIgnored()) {

          double weight = measurements[i].getWeight();
          double residual = measurements[i].getResidual();

          // compute the normal equation
          for (int j = 0; j < parameters.length; ++j) {
            grad[j] = measurements[i].getPartial(parameters[j]);
            bDecrementData[j] = weight * residual * grad[j];
          }

          // build the contribution matrix for measurement i
          for (int k = 0; k < parameters.length; ++k) {
            double gk = grad[k];
            for (int l = 0; l < parameters.length; ++l) {
              wGradGradT.setEntry(k, l, weight * gk * grad[l]);
            }
          }

          // update the matrices
          a = a.add(wGradGradT);
          b = b.add(bDecrement);
        }
      }

      try {

        // solve the linearized least squares problem
        RealVector dX = new LUDecompositionImpl(a).getSolver().solve(b);

        // update the estimated parameters
        for (int i = 0; i < parameters.length; ++i) {
          parameters[i].setEstimate(parameters[i].getEstimate() + dX.getEntry(i));
        }

      } catch (InvalidMatrixException e) {
        throw new EstimationException("unable to solve: singular problem");
      }

      previous = cost;
      updateResidualsAndCost();

    } while ((getCostEvaluations() < 2)
        || (Math.abs(previous - cost) > (cost * steadyStateThreshold)
            && (Math.abs(cost) > convergence)));
  }