Exemplo n.º 1
0
 /**
  * Get the probability distribution according to score and thresholds
  *
  * @param score The score
  * @param vec The MutableVec to be filled in.
  */
 public void getProbDistribution(double score, Vector vec) {
   double pre = getProbLE(score, 0);
   vec.set(0, pre);
   for (int i = 1; i < getLevelCount(); i++) {
     double pro = getProbLE(score, i);
     vec.set(i, pro - pre);
     pre = pro;
   }
 }
Exemplo n.º 2
0
    /** The train function of OrdRec. Get all parameters after learning process. */
    @SuppressWarnings("ConstantConditions")
    private void train(SparseVector ratings, MutableSparseVector scores) {

      Vector dbeta = Vector.createLength(beta.length());
      double dt1;
      // n is the number of iteration;
      for (int j = 0; j < iterationCount; j++) {
        for (VectorEntry rating : ratings.fast()) {
          long iid = rating.getKey();
          double score = scores.get(iid);
          int r = quantizer.index(rating.getValue());

          double probEqualR = getProbEQ(score, r);
          double probLessR = getProbLE(score, r);
          double probLessR_1 = getProbLE(score, r - 1);

          dt1 =
              learningRate
                  / probEqualR
                  * (probLessR * (1 - probLessR) * derivateOfBeta(r, 0, t1)
                      - probLessR_1 * (1 - probLessR_1) * derivateOfBeta(r - 1, 0, t1)
                      - regTerm * t1);

          double dbetaK;
          for (int k = 0; k < beta.length(); k++) {
            dbetaK =
                learningRate
                    / probEqualR
                    * (probLessR * (1 - probLessR) * derivateOfBeta(r, k + 1, beta.get(k))
                        - probLessR_1
                            * (1 - probLessR_1)
                            * derivateOfBeta(r - 1, k + 1, beta.get(k))
                        - regTerm * beta.get(k));
            dbeta.set(k, dbetaK);
          }
          t1 = t1 + dt1;
          beta.add(dbeta);
        }
      }
    }