private double getPMulticluster(List<List<Integer>> clusters, int numRestarts) {
    if (false) {
      Graph g = new EdgeListGraph();
      List<Node> latents = new ArrayList<Node>();
      for (int i = 0; i < clusters.size(); i++) {
        GraphNode latent = new GraphNode("L" + i);
        latent.setNodeType(NodeType.LATENT);
        latents.add(latent);
        g.addNode(latent);

        List<Node> cluster = variablesForIndices(clusters.get(i));

        for (int j = 0; j < cluster.size(); j++) {
          g.addNode(cluster.get(j));
          g.addDirectedEdge(latent, cluster.get(j));
        }
      }
      SemPm pm = new SemPm(g);

      //            pm.fixOneLoadingPerLatent();

      SemOptimizerPowell semOptimizer = new SemOptimizerPowell();
      semOptimizer.setNumRestarts(numRestarts);

      SemEstimator est = new SemEstimator(cov, pm, semOptimizer);
      est.setScoreType(SemIm.ScoreType.Fgls);
      est.estimate();
      return est.getEstimatedSem().getPValue();
    } else {
      double max = Double.NEGATIVE_INFINITY;

      for (int i = 0; i < numRestarts; i++) {
        Mimbuild2 mimbuild = new Mimbuild2();

        List<List<Node>> _clusters = new ArrayList<List<Node>>();

        for (List<Integer> _cluster : clusters) {
          _clusters.add(variablesForIndices(_cluster));
        }

        List<String> names = new ArrayList<String>();

        for (int j = 0; j < clusters.size(); j++) {
          names.add("L" + j);
        }

        mimbuild.search(_clusters, names, cov);

        double c = mimbuild.getpValue();
        if (c > max) max = c;
      }

      return max;
    }
  }
  private double getP(List<Integer> cluster, int numRestarts) {
    if (true) {
      Node latent = new GraphNode("L");
      latent.setNodeType(NodeType.LATENT);
      Graph g = new EdgeListGraph();
      g.addNode(latent);
      List<Node> measures = variablesForIndices(cluster);
      for (Node node : measures) {
        g.addNode(node);
        g.addDirectedEdge(latent, node);
      }
      SemPm pm = new SemPm(g);

      //            pm.fixOneLoadingPerLatent();

      SemOptimizerPowell semOptimizer = new SemOptimizerPowell();
      semOptimizer.setNumRestarts(numRestarts);

      SemEstimator est = new SemEstimator(cov, pm, semOptimizer);
      est.setScoreType(SemIm.ScoreType.Fgls);
      est.estimate();
      return est.getEstimatedSem().getPValue();
    } else {
      double max = Double.NEGATIVE_INFINITY;

      for (int i = 0; i < numRestarts; i++) {
        Mimbuild2 mimbuild = new Mimbuild2();

        List<List<Node>> clusters1 = new ArrayList<List<Node>>();
        clusters1.add(variablesForIndices(new ArrayList<Integer>(cluster)));

        List<String> names = new ArrayList<String>();
        names.add("L");

        mimbuild.search(clusters1, names, cov);

        double c = mimbuild.getpValue();
        if (c > max) max = c;
      }

      return max;
    }
  }
  private double getClusterP2(List<Node> c) {
    Graph g = new EdgeListGraph(c);
    Node l = new GraphNode("L");
    l.setNodeType(NodeType.LATENT);
    g.addNode(l);

    for (Node n : c) {
      g.addDirectedEdge(l, n);
    }

    SemPm pm = new SemPm(g);
    SemEstimator est;
    if (dataModel instanceof DataSet) {
      est = new SemEstimator((DataSet) dataModel, pm, new SemOptimizerEm());
    } else {
      est = new SemEstimator((CovarianceMatrix) dataModel, pm, new SemOptimizerEm());
    }
    SemIm estIm = est.estimate();
    double pValue = estIm.getPValue();
    return pValue == 1 ? Double.NaN : pValue;
  }
Exemplo n.º 4
0
  /**
   * Constructs a new standardized SEM IM from the freeParameters in the given SEM IM.
   *
   * @param im Stop asking me for these things! The given SEM IM!!!
   * @param initialization CALCULATE_FROM_SEM if the initial values will be calculated from the
   *     given SEM IM; INITIALIZE_FROM_DATA if data will be simulated from the given SEM,
   *     standardized, and estimated.
   */
  public StandardizedSemIm(SemIm im, Initialization initialization) {
    this.semPm = new SemPm(im.getSemPm());
    this.semGraph = new SemGraph(semPm.getGraph());
    semGraph.setShowErrorTerms(true);

    if (semGraph.existsDirectedCycle()) {
      throw new IllegalArgumentException("The cyclic case is not handled.");
    }

    if (initialization == Initialization.CALCULATE_FROM_SEM) {
      //         This code calculates the new coefficients directly from the old ones.
      edgeParameters = new HashMap<Edge, Double>();

      List<Node> nodes = im.getVariableNodes();
      TetradMatrix impliedCovar = im.getImplCovar(true);

      for (Parameter parameter : im.getSemPm().getParameters()) {
        if (parameter.getType() == ParamType.COEF) {
          Node a = parameter.getNodeA();
          Node b = parameter.getNodeB();
          int aindex = nodes.indexOf(a);
          int bindex = nodes.indexOf(b);
          double vara = impliedCovar.get(aindex, aindex);
          double stda = Math.sqrt(vara);
          double varb = impliedCovar.get(bindex, bindex);
          double stdb = Math.sqrt(varb);
          double oldCoef = im.getEdgeCoef(a, b);
          double newCoef = (stda / stdb) * oldCoef;
          edgeParameters.put(Edges.directedEdge(a, b), newCoef);
        } else if (parameter.getType() == ParamType.COVAR) {
          Node a = parameter.getNodeA();
          Node b = parameter.getNodeB();
          Node exoa = semGraph.getExogenous(a);
          Node exob = semGraph.getExogenous(b);
          double covar = im.getErrCovar(a, b) / Math.sqrt(im.getErrVar(a) * im.getErrVar(b));
          edgeParameters.put(Edges.bidirectedEdge(exoa, exob), covar);
        }
      }
    } else {

      // This code estimates the new coefficients from simulated data from the old model.
      DataSet dataSet = im.simulateData(1000, false);
      TetradMatrix _dataSet = dataSet.getDoubleData();
      _dataSet = DataUtils.standardizeData(_dataSet);
      DataSet dataSetStandardized = ColtDataSet.makeData(dataSet.getVariables(), _dataSet);

      SemEstimator estimator = new SemEstimator(dataSetStandardized, im.getSemPm());
      SemIm imStandardized = estimator.estimate();

      edgeParameters = new HashMap<Edge, Double>();

      for (Parameter parameter : imStandardized.getSemPm().getParameters()) {
        if (parameter.getType() == ParamType.COEF) {
          Node a = parameter.getNodeA();
          Node b = parameter.getNodeB();
          double coef = imStandardized.getEdgeCoef(a, b);
          edgeParameters.put(Edges.directedEdge(a, b), coef);
        } else if (parameter.getType() == ParamType.COVAR) {
          Node a = parameter.getNodeA();
          Node b = parameter.getNodeB();
          Node exoa = semGraph.getExogenous(a);
          Node exob = semGraph.getExogenous(b);
          double covar = -im.getErrCovar(a, b) / Math.sqrt(im.getErrVar(a) * im.getErrVar(b));
          edgeParameters.put(Edges.bidirectedEdge(exoa, exob), covar);
        }
      }
    }

    this.measuredNodes = Collections.unmodifiableList(semPm.getMeasuredNodes());
  }