Exemplo n.º 1
0
  /**
   * Inserts the classifier in the population. Before that, it looks if there is a classifier in the
   * population with the same action and condition (in this case, increments its numerosity). After,
   * it checks that the number of micro classifiers is less than the maximum population size. If it
   * isn't, it deletes one classifier from the population calling the deleteClassifier function. It
   * inserts the classifier in the population and in the action set if it's not null.
   *
   * @param cl is the classifier that has to be inserted in the population.
   * @param ASet Population where the classifier will be inserted.
   */
  public void insertInPopulation(Classifier cl, Population ASet) {
    boolean found = false;
    int i = 0;

    while (i < macroClSum && !found) {
      if (set[i].equals(cl)) {
        set[i].increaseNumerosity(cl.getNumerosity());
        microClSum += cl.getNumerosity();
        if (ASet != null) {
          if (ASet.isThereClassifier(set[i]) >= 0) ASet.microClSum += cl.getNumerosity();
        }
        found = true;
      }
      i++;
    }
    if (!found) {
      addClassifier(cl);
    }

    // Here, the classifier has been added to the population
    if (microClSum
        > Config.popSize) { // If we have inserted to many classifiers, we have to delete one.
      deleteClFromPopulation(ASet);
    }
  } // end insertInPopulation
 /**
  * Unmarshall a Genotype instance from a given XML Element representation. Its population of
  * Chromosomes will be unmarshalled from the Chromosome sub-elements.
  *
  * @param a_activeConfiguration the current active Configuration object that is to be used during
  *     construction of the Genotype and Chromosome instances
  * @param a_xmlElement the XML Element representation of the Genotype
  * @return a new Genotype instance, complete with a population of Chromosomes, setup with the data
  *     from the XML Element representation
  * @throws ImproperXMLException if the given Element is improperly structured or missing data
  * @throws InvalidConfigurationException if the given Configuration is in an inconsistent state
  * @throws UnsupportedRepresentationException if the actively configured Gene implementation does
  *     not support the string representation of the alleles used in the given XML document
  * @throws GeneCreationException if there is a problem creating or populating a Gene instance
  * @author Neil Rotstan
  * @author Klaus Meffert
  * @since 1.0
  */
 public static Genotype getGenotypeFromElement(
     Configuration a_activeConfiguration, Element a_xmlElement)
     throws ImproperXMLException, InvalidConfigurationException,
         UnsupportedRepresentationException, GeneCreationException {
   // Sanity check. Make sure the XML element isn't null and that it
   // actually represents a genotype.
   if (a_xmlElement == null || !(a_xmlElement.getTagName().equals(GENOTYPE_TAG))) {
     throw new ImproperXMLException(
         "Unable to build Genotype instance from XML Element: "
             + "given Element is not a 'genotype' element.");
   }
   // Fetch all of the nested chromosome elements and convert them
   // into Chromosome instances.
   // ------------------------------------------------------------
   NodeList chromosomes = a_xmlElement.getElementsByTagName(CHROMOSOME_TAG);
   int numChromosomes = chromosomes.getLength();
   Population population = new Population(a_activeConfiguration, numChromosomes);
   for (int i = 0; i < numChromosomes; i++) {
     population.addChromosome(
         getChromosomeFromElement(a_activeConfiguration, (Element) chromosomes.item(i)));
   }
   // Construct a new Genotype with the chromosomes and return it.
   // ------------------------------------------------------------
   return new Genotype(a_activeConfiguration, population);
 }
 /**
  * @param a_population the population of chromosomes from the current evolution prior to exposure
  *     to any genetic operators. Chromosomes in this array should not be modified. Please, notice,
  *     that the call in Genotype.evolve() to the implementations of GeneticOperator overgoes this
  *     due to performance issues
  * @param a_candidateChromosomes the pool of chromosomes that have been selected for the next
  *     evolved population
  * @author Audrius Meskauskas
  * @author Klaus Meffert
  * @since 3.3.2
  */
 public void operate(final Population a_population, List a_candidateChromosomes) {
   // this was a private variable, now it is local reference.
   final IUniversalRateCalculator m_mutationRateCalc = getMutationRateCalc();
   // If the mutation rate is set to zero and dynamic mutation rate is
   // disabled, then we don't perform any mutation.
   // ----------------------------------------------------------------
   if (getMutationRate() == 0 && m_mutationRateCalc == null) {
     return;
   }
   // Determine the mutation rate. If dynamic rate is enabled, then
   // calculate it based upon the number of genes in the chromosome.
   // Otherwise, go with the mutation rate set upon construction.
   // --------------------------------------------------------------
   int currentRate;
   if (m_mutationRateCalc != null) {
     currentRate = m_mutationRateCalc.calculateCurrentRate();
   } else {
     currentRate = getMutationRate();
   }
   RandomGenerator generator = getConfiguration().getRandomGenerator();
   // It would be inefficient to create copies of each Chromosome just
   // to decide whether to mutate them. Instead, we only make a copy
   // once we've positively decided to perform a mutation.
   // ----------------------------------------------------------------
   int size = a_population.size();
   for (int i = 0; i < size; i++) {
     IChromosome x = a_population.getChromosome(i);
     // This returns null if not mutated:
     IChromosome xm = operate(x, currentRate, generator);
     if (xm != null) {
       a_candidateChromosomes.add(xm);
     }
   }
 }
Exemplo n.º 4
0
 /**
  * It creates a new Population with only the sufficiently experienced classifiers.
  *
  * @param maxReward is the maximum reward of the environment.
  * @return a Population with the experienced population
  */
 public Population deleteNotExpClassifiers(double maxReward) {
   // We create a Config.popSize population instead of a macroClSum classifier, because, if it's
   // used in a training execution, this population can increase (new classifiers can be added).
   Population pExp = new Population(Config.popSize);
   for (int i = 0; i < macroClSum; i++) {
     if (set[i].couldReduce(maxReward)) {
       pExp.addClassifier(set[i]);
     }
   }
   return pExp;
 } // end deleteNotExpClassifiers
Exemplo n.º 5
0
  public static boolean xor_epoch(Population pop, int generation, String filename) {

    boolean esito = false;
    // Evaluate each organism if exist the winner.........
    boolean win = false;

    Iterator itr_organism;
    itr_organism = pop.organisms.iterator();
    while (itr_organism.hasNext()) {
      // point to organism
      Organism _organism = ((Organism) itr_organism.next());
      // evaluate
      esito = xor_evaluate(_organism);
      // if is a winner , store a flag
      if (esito) win = true;
    }

    // compute average and max fitness for each species
    Iterator itr_specie;
    itr_specie = pop.species.iterator();
    while (itr_specie.hasNext()) {
      Species _specie = ((Species) itr_specie.next());
      _specie.compute_average_fitness();
      _specie.compute_max_fitness();
    }
    // Only print to file every print_every generations

    if (win || (generation % Neat.p_print_every) == 0)
      pop.print_to_file_by_species("c:\\jneat\\dati\\" + filename);

    // if exist a winner write to file
    if (win) {
      int cnt = 0;
      itr_organism = pop.getOrganisms().iterator();
      while (itr_organism.hasNext()) {
        Organism _organism = ((Organism) itr_organism.next());
        if (_organism.winner) {
          System.out.print("\n   -WINNER IS #" + _organism.genome.genome_id);
          _organism.getGenome().print_to_filename("c:\\jneat\\dati\\xor_win" + cnt);
          cnt++;
        }
      }
    }
    // wait an epoch and make a reproductionof the best species
    pop.epoch(generation);
    if (win) {
      System.out.print("\t\t** I HAVE FOUND A CHAMPION **");
      return true;
    } else return false;
  }
  public boolean needsToRun(Run run, int generation) {
    Population pop = getPopulationFor(run, generation);
    int count = run.getIntProperty(GenetikConstants.POPULATION, Integer.MAX_VALUE, true);
    int scoreCount = 0;

    for (int i = 0, max = pop.size(); i < max; i++) {
      Individual ind = pop.get(i);

      if (ind.hasFitness() && ind.hasScores()) {
        scoreCount++;
      }
    }

    return scoreCount != count;
  }
Exemplo n.º 7
0
  /**
   * This constructor creates the match set of the population. It has to cover the uncovered actions
   * while, at least, the theta_mna actions aren't covered. It uses the actionCovered variable to do
   * this.
   *
   * @param envState is the state of the input (it has to take the classifiers that match with it).
   * @param pop is the population of the system (it contains all the classifiers).
   * @param tStamp it's the actual time. It's needed to create the new classifiers).
   * @param isExploreExecution indicates if the current step is an explore or an exploit trail,
   *     because the covering operator will be applied or not.
   */
  public Population(double[] envState, Population pop, int tStamp, boolean isExploreExecution) {
    int pos = 0;
    // A population of size parent.numerosity + numberOfActions is needed,
    // because in the worst case, it will have to cover all the actions.
    set = new Classifier[pop.macroClSum + Config.numberOfActions];
    microClSum = 0;
    macroClSum = 0;
    parentRef = pop;
    specify = new Specify();

    boolean[] actionCovered = new boolean[Config.numberOfActions];
    for (pos = 0; pos < actionCovered.length; pos++) {
      actionCovered[pos] = false;
    }

    for (pos = 0; pos < pop.getMacroClSum(); pos++) {
      if (pop.set[pos].match(envState)) {
        addClassifier(pop.set[pos]);
        actionCovered[pop.set[pos].getAction()] = true;
      }
    }

    if (isExploreExecution) {
      Covering cov = new Covering();
      cov.coverActions(pop, this, envState, tStamp, actionCovered);
    }
  } // end Population
 /**
  * Marshall a Genotype instance into an XML Element representation, including its population of
  * Chromosome instances as sub-elements. This may be useful in scenarios where representation as
  * an entire Document is undesirable, such as when the representation of this Genotype is to be
  * combined with other elements in a single Document.
  *
  * @param a_subject the genotype to represent as an XML element
  * @param a_xmlDocument a Document instance that will be used to create the Element instance. Note
  *     that the element will NOT be added to the document by this method
  * @return an Element object representing the given Genotype
  * @author Neil Rotstan
  * @since 1.0
  * @deprecated use XMLDocumentBuilder instead
  */
 public static Element representGenotypeAsElement(
     final Genotype a_subject, final Document a_xmlDocument) {
   Population population = a_subject.getPopulation();
   // Start by creating the genotype element and its size attribute,
   // which represents the number of chromosomes present in the
   // genotype.
   // --------------------------------------------------------------
   Element genotypeTag = a_xmlDocument.createElement(GENOTYPE_TAG);
   genotypeTag.setAttribute(SIZE_ATTRIBUTE, Integer.toString(population.size()));
   // Next, add nested elements for each of the chromosomes in the
   // genotype.
   // ------------------------------------------------------------
   for (int i = 0; i < population.size(); i++) {
     Element chromosomeElement =
         representChromosomeAsElement(population.getChromosome(i), a_xmlDocument);
     genotypeTag.appendChild(chromosomeElement);
   }
   return genotypeTag;
 }
Exemplo n.º 9
0
  /** This method applies the action set subsumption */
  public void doActionSetSubsumption() {
    int i, pos = 0;
    Classifier cl = null;

    for (i = 0; i < macroClSum; i++) {
      if (set[i].couldSubsume()) {
        if (cl == null
            || set[i].numberOfDontCareSymbols() > cl.numberOfDontCareSymbols()
            || (set[i].numberOfDontCareSymbols() == cl.numberOfDontCareSymbols()
                && Config.rand() < 0.5)) {
          cl = set[i];
          pos = i;
        }
      }
    }
    if (cl != null) {
      for (i = 0; i < macroClSum; i++) {
        if (cl != set[i] && cl.isMoreGeneral(set[i])) {
          cl.increaseNumerosity(set[i].getNumerosity());
          // Now, the classifier has to be removed from the actionSet and the population.
          // It's deleted from the action set.
          Classifier clDeleted = set[i];
          deleteClassifier(i);

          // And now, it's deleted from the population
          Population p = parentRef;
          while (p.parentRef != null) {
            p = p.parentRef;
          }

          pos =
              p.isThereClassifier(
                  clDeleted); // The classifier is searched in the initial population.

          if (pos >= 0) p.deleteClassifier(pos);
        }
      }
    }
  } // end doActionSetSubsumption
Exemplo n.º 10
0
  /**
   * It creates the D population defined by Wilson 2002. It creates a population with the minimum
   * number of classifiers that cover all the input examples.
   *
   * @param env Environment to be set in the new population.
   * @return the D population created
   */
  public Population createMCompPopulation(Environment env) {
    int moreMatches = 0, maxMatched = 0;

    // We create a Config.popSize population instead of a macroClSum classifier, because, if it's
    // used in a training execution, this population can increase (new classifiers can be added).
    Population Mcomp = new Population(Config.popSize);

    while (env.getNumberOfExamples() > 0 && macroClSum > 0) {
      moreMatches = 0;
      maxMatched = set[0].getNumberMatches();
      for (int i = 1; i < macroClSum; i++) {
        if (set[i].getNumberMatches() > maxMatched) {
          maxMatched = set[i].getNumberMatches();
          moreMatches = i;
        }
      }

      Mcomp.addClassifier(set[moreMatches]);
      env.deleteMatchedExamples(set[moreMatches]);
      deleteClassifier(moreMatches);
    }
    return Mcomp;
  } // end createMcompPopulation
Exemplo n.º 11
0
  /**
   * This is a sample of creating a new Population with 'size_population' organisms , and simulation
   * of XOR example This sample can be started in two modality : -cold : each time the population is
   * re-created from 0; -warm : each time the population re-read last population created and restart
   * from last epoch. (the population backup file is : 'c:\\jneat\\dati\\population.primitive'
   */
  public static void Experiment3(int size_population, int mode, int gens) {
    Population pop = null;
    String fname_prefix = "c:\\jneat\\dati\\population.primitive";
    String fnamebuf;
    int gen;
    int id;
    int expcount = 0;
    String mask6 = "000000";
    DecimalFormat fmt6 = new DecimalFormat(mask6);

    System.out.println("------ Start experiment 3 -------");

    for (expcount = 0; expcount < Neat.p_num_runs; expcount++) {
      System.out.println(" Spawned population off genome");

      double prb_link = 0.50;
      boolean recurrent = true;

      // default cold is : 3 sensor (1 for bias) , 1 out , 5 nodes max, no recurrent
      if (mode == NeatConstant.COLD)
        pop = new Population(size_population, 3, 1, 5, recurrent, prb_link); // cold start-up
      //		   pop = new Population(size_population, 3, 1, 5, recurrent, prb_link);		// cold start-up
      else pop = new Population(fname_prefix + ".last"); // warm start-up

      pop.verify();
      System.out.print("\n---------------- Generation starting with----------");
      System.out.print("\n  Population : innov num   = " + pop.getCur_innov_num());
      System.out.print("\n             : cur_node_id = " + pop.getCur_node_id());
      System.out.print("\n---------------------------------------------------");

      System.out.print("\n");
      for (gen = 1; gen <= gens; gen++) {
        System.out.print("\n---------------- Generation ----------------------" + gen);
        fnamebuf = "g_" + fmt6.format(gen);
        boolean esito = xor_epoch(pop, gen, fnamebuf);
        System.out.print("\n  Population : innov num   = " + pop.getCur_innov_num());
        System.out.print("\n             : cur_node_id = " + pop.getCur_node_id());
        System.out.print("\n   result    : " + esito);
      }
    }

    // backup of population for warm startup
    pop.print_to_filename(fname_prefix + ".last");

    System.out.println("\n\n End of experiment");
  }
Exemplo n.º 12
0
  /**
   * Deletes one classifier from the population. After that, if the population passed as a parameter
   * is not null, it looks for the deleted classifier. If it is in the second population, it will
   * delete it too.
   *
   * @param aSet is the population where the deleted classifier has to be searched.
   * @return a Classifier that contains the deleted classifier.
   */
  public Classifier deleteClFromPopulation(Population aSet) {
    // A classifier has been deleted from the population
    Classifier clDeleted = deleteClassifier();

    if (aSet
        != null) { // Now, this classifier has to be deleted from the action set (if it exists in).
      int pos = aSet.isThereClassifier(clDeleted); // It is searched in the action set.
      if (pos >= 0) { // It has to be deleted from the action set too.
        aSet.microClSum--;

        // If the classifier has 0 numerosity, we remove it from the population.
        if (clDeleted.getNumerosity() == 0) { // It has to be completely deleted from action set.
          aSet.macroClSum--; // Decrements the number of macroclassifiers
          aSet.set[pos] = aSet.set[aSet.macroClSum]; // Moves the last classifier to the deleted one
          aSet.set[aSet.macroClSum] = null; // Puts the last classifier to null.
        }
      }
    }
    return clDeleted;
  } // end deleteClFromPopulation
Exemplo n.º 13
0
  /**
   * this is a standard experiment for XOR emulation; is passed a name of a started genome and a
   * number of times can be execute this experiment;
   */
  public static void Experiment1(String xFileName, int gens) {

    String fname_prefix = "c:\\jneat\\dati\\population.natural";
    Population pop = null;
    StringTokenizer st;
    String curword;
    String xline;
    String fnamebuf;
    int gen;
    IOseq xFile;
    int id;
    int expcount = 0;
    String mask6 = "000000";
    DecimalFormat fmt6 = new DecimalFormat(mask6);

    System.out.println("------ Start experiment 1 -------");

    xFile = new IOseq(xFileName);
    boolean ret = xFile.IOseqOpenR();
    if (ret) {

      try {

        System.out.println(" Start XOR experiment");
        System.out.println("  .read start genome..");

        xline = xFile.IOseqRead();

        st = new StringTokenizer(xline);
        // skip
        curword = st.nextToken();
        // id of genome can be readed
        curword = st.nextToken();
        id = Integer.parseInt(curword);

        System.out.println("  .create genome id " + id);

        Genome start_genome = new Genome(id, xFile);
        // backup this 'initial' genome (is only for test
        // if the read & write are correct
        start_genome.print_to_filename("c:\\jneat\\dati\\genome.readed");

        for (expcount = 0; expcount < Neat.p_num_runs; expcount++) {
          System.out.println(" Spawned population off genome");
          pop = new Population(start_genome, Neat.p_pop_size);
          System.out.print("\n\n Verifying Spawned Pop");
          pop.verify();

          System.out.print("\n");

          for (gen = 1; gen <= gens; gen++) {
            System.out.print("\n---------------- E P O C H  < " + gen + " >--------------");

            fnamebuf = "g_" + fmt6.format(gen);
            boolean esito = xor_epoch(pop, gen, fnamebuf);
          }

          System.out.print("\n  Population : innov num   = " + pop.getCur_innov_num());
          System.out.print("\n             : cur_node_id = " + pop.getCur_node_id());

          pop.print_to_filename(fname_prefix);
        }
      } catch (Throwable e) {
        System.err.println(e + " : error during read " + xFileName);
      }

      xFile.IOseqCloseR();

    } else System.err.print("\n : error during open " + xFileName);

    System.out.println("\n\n End of experiment");
  }
Exemplo n.º 14
0
  /** It's the new reduction algorithm. (Experimental phase) */
  private void reductInTrain() {
    double averageUseful = 0.0, stdUseful = 0.0;
    int i = 0;
    int numSum = 0;
    // A reference to the population is gotten.
    Population pop = this.getParentRef().getParentRef();

    while (i < macroClSum) {
      if (!set[i].couldComp()) {
        numSum += set[i].getNumerosity();
        set[i].setNumerosity(0);
        // The classifier is removed from the [A]
        set[i] = set[macroClSum - 1];
        macroClSum--;
        /////
        numAplicacions++;
      } else {
        averageUseful += set[i].getUsefulTimes();
        stdUseful += (set[i].getUsefulTimes() * set[i].getUsefulTimes());
        i++;
      }
    }

    if (macroClSum > 0) {
      if (macroClSum > 1)
        stdUseful =
            Math.sqrt(
                (stdUseful - ((averageUseful * averageUseful) / macroClSum)) / (macroClSum - 1));
      averageUseful = averageUseful / (double) macroClSum;

      // With the "thres" parameter you can control the compactation pressure (add or substract the
      // stdUseful)
      int thres = (int) (averageUseful - stdUseful);
      i = 0;
      averageUseful = 0;
      while (i < macroClSum) {
        if (set[i].getUsefulTimes() < thres && set[i].getPrediction() > Config.Preduct) {
          numSum += set[i].getNumerosity();
          set[i].setNumerosity(0);
          set[i] = set[macroClSum - 1];
          macroClSum--;
          /////
          numAplicacions++;
        } else {
          // We add the contribuion of each classifier to distribute the numerosity at the end
          averageUseful += set[i].getUsefulTimes();
          i++;
        }
      }

      // The numerosity of classifiers deleted are set to other classifiers in the population.
      int addNum = 0;
      int discount = 0;
      for (i = 0; i < macroClSum - 1; i++) {
        addNum = (int) (((double) set[i].getUsefulTimes() / averageUseful) * (double) numSum);
        set[i].increaseNumerosity(addNum);
        discount += addNum;
      }

      if (macroClSum > 0) set[macroClSum - 1].increaseNumerosity(numSum - discount);

    } else {
      microClSum -= numSum;
      pop.microClSum -= numSum;
    }

    pop.deleteClWithZeroNum();
  }