protected void read(DataInputStream s) { try { ref = new WeakReference<DataBuffer>(this, Nd4j.bufferRefQueue()); referencing = Collections.synchronizedSet(new HashSet<String>()); dirty = new AtomicBoolean(false); allocationMode = AllocationMode.valueOf(s.readUTF()); length = s.readInt(); Type t = Type.valueOf(s.readUTF()); if (t == Type.DOUBLE) { if (allocationMode == AllocationMode.HEAP) { if (this.dataType() == Type.FLOAT) { // DataBuffer type // double -> float floatData = new float[length()]; } else if (this.dataType() == Type.DOUBLE) { // double -> double doubleData = new double[length()]; } else { // double -> int intData = new int[length()]; } for (int i = 0; i < length(); i++) { put(i, s.readDouble()); } } else { wrappedBuffer = ByteBuffer.allocateDirect(length() * getElementSize()); wrappedBuffer.order(ByteOrder.nativeOrder()); for (int i = 0; i < length(); i++) { put(i, s.readDouble()); } } } else { if (allocationMode == AllocationMode.HEAP) { if (this.dataType() == Type.FLOAT) { // DataBuffer type // float -> float floatData = new float[length()]; } else if (this.dataType() == Type.DOUBLE) { // float -> double doubleData = new double[length()]; } else { // float-> int intData = new int[length()]; } for (int i = 0; i < length(); i++) { put(i, s.readFloat()); } } else { wrappedBuffer = ByteBuffer.allocateDirect(length() * getElementSize()); wrappedBuffer.order(ByteOrder.nativeOrder()); for (int i = 0; i < length(); i++) { put(i, s.readFloat()); } } } } catch (Exception e) { throw new RuntimeException(e); } }
/** * Create a data buffer from the given length * * @param buffer * @param length */ public BaseDataBuffer(ByteBuffer buffer, int length) { allocationMode = Nd4j.alloc; this.length = length; buffer.order(ByteOrder.nativeOrder()); if (allocationMode() == AllocationMode.DIRECT) { this.wrappedBuffer = buffer; } else if (dataType() == Type.INT) { intData = new int[length]; IntBuffer intBuffer = buffer.asIntBuffer(); for (int i = 0; i < length; i++) { intData[i] = intBuffer.get(i); } } else if (dataType() == Type.DOUBLE) { doubleData = new double[length]; DoubleBuffer doubleBuffer = buffer.asDoubleBuffer(); for (int i = 0; i < length; i++) { doubleData[i] = doubleBuffer.get(i); } } else if (dataType() == Type.FLOAT) { floatData = new float[length]; FloatBuffer floatBuffer = buffer.asFloatBuffer(); for (int i = 0; i < length; i++) { floatData[i] = floatBuffer.get(i); } } }
/** * @param data * @param copy */ public BaseDataBuffer(int[] data, boolean copy) { allocationMode = Nd4j.alloc; if (allocationMode == AllocationMode.HEAP) { if (copy) intData = ArrayUtil.copy(data); else this.intData = data; } else { wrappedBuffer = ByteBuffer.allocateDirect(4 * data.length); wrappedBuffer.order(ByteOrder.nativeOrder()); IntBuffer buffer = wrappedBuffer.asIntBuffer(); for (int i = 0; i < data.length; i++) { buffer.put(i, data[i]); } } length = data.length; }
/** * Instantiate a buffer with the given length * * @param length the length of the buffer */ protected BaseDataBuffer(int length) { this.length = length; allocationMode = Nd4j.alloc; if (length < 0) throw new IllegalArgumentException("Unable to create a buffer of length <= 0"); ref = new WeakReference<DataBuffer>(this, Nd4j.bufferRefQueue()); if (allocationMode == AllocationMode.HEAP) { if (length >= Integer.MAX_VALUE) throw new IllegalArgumentException( "Length of data buffer can not be > Integer.MAX_VALUE for heap (array based storage) allocation"); if (dataType() == Type.DOUBLE) doubleData = new double[length]; else if (dataType() == Type.FLOAT) floatData = new float[length]; } else { if (length * getElementSize() < 0) throw new IllegalArgumentException( "Unable to create buffer of length " + length + " due to negative length specified"); wrappedBuffer = ByteBuffer.allocateDirect(getElementSize() * length).order(ByteOrder.nativeOrder()); } }
/** * @param data * @param copy */ public BaseDataBuffer(double[] data, boolean copy) { allocationMode = Nd4j.alloc; if (allocationMode == AllocationMode.HEAP) { if (copy) { doubleData = ArrayUtil.copy(data); } else { this.doubleData = data; } } else { wrappedBuffer = ByteBuffer.allocateDirect(8 * data.length); wrappedBuffer.order(ByteOrder.nativeOrder()); DoubleBuffer buffer = wrappedBuffer.asDoubleBuffer(); for (int i = 0; i < data.length; i++) { buffer.put(i, data[i]); } } length = data.length; underlyingLength = data.length; }
private static int biTypePF(int biType) { ByteOrder byteOrder = ByteOrder.nativeOrder(); switch (biType) { case BufferedImage.TYPE_3BYTE_BGR: return TJ.PF_BGR; case BufferedImage.TYPE_4BYTE_ABGR: case BufferedImage.TYPE_4BYTE_ABGR_PRE: return TJ.PF_XBGR; case BufferedImage.TYPE_BYTE_GRAY: return TJ.PF_GRAY; case BufferedImage.TYPE_INT_BGR: if (byteOrder == ByteOrder.BIG_ENDIAN) return TJ.PF_XBGR; else return TJ.PF_RGBX; case BufferedImage.TYPE_INT_RGB: if (byteOrder == ByteOrder.BIG_ENDIAN) return TJ.PF_XRGB; else return TJ.PF_BGRX; case BufferedImage.TYPE_INT_ARGB: case BufferedImage.TYPE_INT_ARGB_PRE: if (byteOrder == ByteOrder.BIG_ENDIAN) return TJ.PF_ARGB; else return TJ.PF_BGRA; } return 0; }
/** * 描画用マテリアル情報をMQOデータから作成 * * @param mqomat MQOファイルから読み込んだマテリアル情報 * @param i_mqomat MQOファイルのマテリアル番号 * @param mqoObjs MQOファイルのオブジェクト情報 * @param vn 頂点法線配列 * @return 描画用マテリアル情報 */ private GLMaterial makeMats( GL10 gl, material mqomat, int i_mqomat, objects mqoObjs, KGLPoint[] vn) { GLMaterial ret = new GLMaterial(); ArrayList<KGLPoint> apv = new ArrayList<KGLPoint>(); ArrayList<KGLPoint> apn = new ArrayList<KGLPoint>(); ArrayList<KGLPoint> apuv = new ArrayList<KGLPoint>(); ArrayList<KGLPoint> apc = new ArrayList<KGLPoint>(); KGLPoint wpoint = null; boolean uvValid = false; boolean colValid = false; KGLPoint fn; float s; for (int f = 0; f < mqoObjs.face.length; f++) { if (mqoObjs.face[f].M == null) { continue; } if (mqoObjs.face[f].M != i_mqomat) continue; fn = calcNormal( mqoObjs.vertex, mqoObjs.face[f].V[0], mqoObjs.face[f].V[1], mqoObjs.face[f].V[2]); for (int v = 0; v < 3; v++) { apv.add(mqoObjs.vertex[mqoObjs.face[f].V[v]]); // apv.add(new KGLPoint(mqoObjs.vertex[mqoObjs.face[f].V[v]])) ; s = (float) Math.acos( fn.X() * vn[mqoObjs.face[f].V[v]].X() + fn.Y() * vn[mqoObjs.face[f].V[v]].Y() + fn.Z() * vn[mqoObjs.face[f].V[v]].Z()); if (mqoObjs.data.facet < s) { apn.add(fn); } else { apn.add(vn[mqoObjs.face[f].V[v]]); } wpoint = new KGLPoint(2); if (mqoObjs.face[f].UV == null) { wpoint.set_UV(0, 0); } else { wpoint.set_UV(mqoObjs.face[f].UV[v * 2 + 0], mqoObjs.face[f].UV[v * 2 + 1]); uvValid = true; } apuv.add(wpoint); wpoint = new KGLPoint(4); if (mqoObjs.face[f].COL == null) { if (mqomat.data.col == null) { wpoint.set_COLOR(1.0f, 1.0f, 1.0f, 1.0f); } else { wpoint.set_COLOR( mqomat.data.col[0], mqomat.data.col[1], mqomat.data.col[2], mqomat.data.col[3]); } } else { wpoint.set_COLOR( mqoObjs.face[f].COL[v * 4 + 0], mqoObjs.face[f].COL[v * 4 + 1], mqoObjs.face[f].COL[v * 4 + 2], mqoObjs.face[f].COL[v * 4 + 3]); colValid = true; } apc.add(wpoint); } } ret.texID = texPool.getGLTexture(gl, mqomat.data.tex, mqomat.data.aplane, false); // @@@ reload 用 if (ret.texID != 0) { ret.texName = mqomat.data.tex; ret.alphaTexName = mqomat.data.aplane; } else { ret.texName = null; ret.alphaTexName = null; } if (apv.size() == 0) return null; uvValid &= (ret.texID != 0); ret.name = mqomat.name; // uvValid = false ; KGLPoint[] wfv = null; KGLPoint[] wfn = null; KGLPoint[] wft = null; KGLPoint[] wfc = null; wfv = apv.toArray(new KGLPoint[0]); wfn = apn.toArray(new KGLPoint[0]); wft = apuv.toArray(new KGLPoint[0]); wfc = apc.toArray(new KGLPoint[0]); ret.vertex_num = wfv.length; // @@@ interleaveFormat は無いので分ける ret.uvValid = uvValid; ret.colValid = colValid; ret.vertexBuffer = ByteBuffer.allocateDirect(ret.vertex_num * 3 * 4); ret.vertexBuffer.order(ByteOrder.nativeOrder()); ret.vertexBuffer.position(0); ret.normalBuffer = ByteBuffer.allocateDirect(ret.vertex_num * 3 * 4); ret.normalBuffer.order(ByteOrder.nativeOrder()); ret.normalBuffer.position(0); if (uvValid) { ret.uvBuffer = ByteBuffer.allocateDirect(ret.vertex_num * 2 * 4); ret.uvBuffer.order(ByteOrder.nativeOrder()); ret.uvBuffer.position(0); } if (colValid) { ret.colBuffer = ByteBuffer.allocateDirect(ret.vertex_num * 4 * 4); ret.colBuffer.order(ByteOrder.nativeOrder()); ret.colBuffer.position(0); } // Log.i("KGLMetaseq", "vertex_num: "+ ret.vertex_num); for (int v = 0; v < ret.vertex_num; v++) { ret.vertexBuffer.putFloat(wfv[v].X()); ret.vertexBuffer.putFloat(wfv[v].Y()); ret.vertexBuffer.putFloat(wfv[v].Z()); ret.normalBuffer.putFloat(wfn[v].X()); ret.normalBuffer.putFloat(wfn[v].Y()); ret.normalBuffer.putFloat(wfn[v].Z()); if (uvValid) { ret.uvBuffer.putFloat(wft[v].U()); ret.uvBuffer.putFloat(wft[v].V()); } if (colValid) { ret.colBuffer.putFloat(wfc[v].R()); ret.colBuffer.putFloat(wfc[v].G()); ret.colBuffer.putFloat(wfc[v].B()); ret.colBuffer.putFloat(wfc[v].A()); } } if (mqomat.data.col != null) { ret.color = new float[mqomat.data.col.length]; for (int c = 0; c < mqomat.data.col.length; c++) { ret.color[c] = mqomat.data.col[c]; } if (mqomat.data.dif != null) { ret.dif = new float[mqomat.data.col.length]; for (int c = 0; c < mqomat.data.col.length; c++) { ret.dif[c] = mqomat.data.dif * mqomat.data.col[c]; } // KEICHECK difでアルファ値を1未満にすると透明度が変化する? ret.dif[3] = mqomat.data.col[3]; } if (mqomat.data.amb != null) { ret.amb = new float[mqomat.data.col.length]; for (int c = 0; c < mqomat.data.col.length; c++) { ret.amb[c] = mqomat.data.amb * mqomat.data.col[c]; } } if (mqomat.data.emi != null) { ret.emi = new float[mqomat.data.col.length]; for (int c = 0; c < mqomat.data.col.length; c++) { ret.emi[c] = mqomat.data.emi * mqomat.data.col[c]; } } if (mqomat.data.spc != null) { ret.spc = new float[mqomat.data.col.length]; for (int c = 0; c < mqomat.data.col.length; c++) { ret.spc[c] = mqomat.data.spc * mqomat.data.col[c]; } } } if (mqomat.data.pow != null) { ret.power = new float[1]; ret.power[0] = mqomat.data.pow; } ret.shadeMode_IsSmooth = true; // defaultはtrue if (mqoObjs.data.shading == 0) ret.shadeMode_IsSmooth = false; return ret; }
protected static CharBuffer newCharBuffer(int numElements) { ByteBuffer bb = ByteBuffer.allocateDirect((Character.SIZE / 8) * numElements); bb.order(ByteOrder.nativeOrder()); return bb.asCharBuffer(); }
// sets the nio wrapped buffer (allows to be overridden for other use cases like cuda) protected void setNioBuffer() { wrappedBuffer = ByteBuffer.allocateDirect(elementSize * length); wrappedBuffer.order(ByteOrder.nativeOrder()); }
@SuppressWarnings("unchecked") public Mesh(LinkedHashMap mesh, User user) { this.mesh = mesh; this.user = user; try { title = getStringFromHash(mesh, "title", "Some Object"); ArrayList<Float> vs = new ArrayList<Float>(256); ArrayList<Float> ns = new ArrayList<Float>(256); ArrayList<Float> tp = new ArrayList<Float>(256); LinkedList verts = getListFromHash(mesh, "vertices"); for (Object vert : verts) { vs.add(getFloatFromList(vert, 0, 0f)); vs.add(getFloatFromList(vert, 1, 0f)); vs.add(getFloatFromList(vert, 2, 0f)); } LinkedList norms = getListFromHash(mesh, "normals"); for (Object norm : norms) { ns.add(getFloatFromList(norm, 0, 0f)); ns.add(getFloatFromList(norm, 1, 0f)); ns.add(getFloatFromList(norm, 2, 0f)); } LinkedList texts = getListFromHash(mesh, "texturepoints"); for (Object text : texts) { tp.add(getFloatFromList(text, 0, 0f)); tp.add(getFloatFromList(text, 1, 0f)); } ArrayList<Float> vnt = new ArrayList<Float>(1024); ArrayList<Short> ind = new ArrayList<Short>(1024); short index = 0; LinkedList faces = getListFromHash(mesh, "faces"); for (Object face : faces) { for (int i = 0; i < 3; i++) { String f = getStringFromList(face, i, "1/1/2"); StringTokenizer st = new StringTokenizer(f, "/"); int fv = Integer.parseInt(st.nextToken()) - 1; int ft = Integer.parseInt(st.nextToken()) - 1; int fn = Integer.parseInt(st.nextToken()) - 1; vnt.add(vs.get(fv * 3)); vnt.add(vs.get(fv * 3 + 1)); vnt.add(vs.get(fv * 3 + 2)); vnt.add(ns.get(fn * 3)); vnt.add(ns.get(fn * 3 + 1)); vnt.add(ns.get(fn * 3 + 2)); vnt.add(tp.get(ft * 2)); vnt.add(tp.get(ft * 2 + 1)); ind.add(index++); } } vnt.trimToSize(); float[] va = new float[vnt.size()]; for (int i = 0; i < vnt.size(); i++) va[i] = vnt.get(i); ind.trimToSize(); short[] ia = new short[ind.size()]; for (int i = 0; i < ind.size(); i++) ia[i] = ind.get(i); vb = ByteBuffer.allocateDirect(va.length * 4).order(ByteOrder.nativeOrder()).asFloatBuffer(); vb.put(va).position(0); ib = ByteBuffer.allocateDirect(ia.length * 2).order(ByteOrder.nativeOrder()).asShortBuffer(); ib.put(ia).position(0); il = ia.length; textures = getListFromHash(mesh, "textures"); if (textures.size() == 0) textures = list("placeholder"); vertexShader = user.shaders.get(getStringFromHash(mesh, "vertex-shader", "")); fragmentShader = user.shaders.get(getStringFromHash(mesh, "fragment-shader", "")); subObjects = getListFromHash(mesh, "sub-items"); rotationX = getFloatFromList(getListFromHash(mesh, "rotation"), 0, 0f); rotationY = getFloatFromList(getListFromHash(mesh, "rotation"), 1, 0f); rotationZ = getFloatFromList(getListFromHash(mesh, "rotation"), 2, 0f); scaleX = getFloatFromList(getListFromHash(mesh, "scale"), 0, 1f); scaleY = getFloatFromList(getListFromHash(mesh, "scale"), 1, 1f); scaleZ = getFloatFromList(getListFromHash(mesh, "scale"), 2, 1f); lightR = getFloatFromList(getListFromHash(mesh, "light"), 0, 0f); lightG = getFloatFromList(getListFromHash(mesh, "light"), 1, 0f); lightB = getFloatFromList(getListFromHash(mesh, "light"), 2, 0f); } catch (Exception e) { e.printStackTrace(); Log.e("Mesh Constructor", e.getLocalizedMessage()); return; } }