/** Start the background thread. */ public void start() { // create a random list of cities cities = new City[TravelingSalesman.CITY_COUNT]; for (int i = 0; i < TravelingSalesman.CITY_COUNT; i++) { cities[i] = new City( (int) (Math.random() * (getBounds().width - 10)), (int) (Math.random() * (getBounds().height - 60))); } // create the initial chromosomes chromosomes = new Chromosome[TravelingSalesman.POPULATION_SIZE]; for (int i = 0; i < TravelingSalesman.POPULATION_SIZE; i++) { chromosomes[i] = new Chromosome(cities); chromosomes[i].setCut(cutLength); chromosomes[i].setMutation(TravelingSalesman.MUTATION_PERCENT); } Chromosome.sortChromosomes(chromosomes, TravelingSalesman.POPULATION_SIZE); // start up the background thread started = true; map.update(map.getGraphics()); generation = 0; if (worker != null) worker = null; worker = new Thread(this); // worker.setPriority(Thread.MIN_PRIORITY); worker.start(); }
/** Start the background thread. */ public void start() { // create a random list of cities cities = new City[TravelingSalesman.CITY_COUNT]; for (int i = 0; i < TravelingSalesman.CITY_COUNT; i++) { cities[i] = new City( (int) (Math.random() * (getBounds().width - 10)), (int) (Math.random() * (getBounds().height - 60))); } // start up the background thread started = true; map.update(map.getGraphics()); if (worker != null) worker = null; worker = new SimulateAnnealing(this); worker.setPriority(Thread.MIN_PRIORITY); worker.start(); }
/** The main loop for the background thread. It is here that most of the work os orchestrated. */ public void run() { double thisCost = 500.0; double oldCost = 0.0; double dcost = 500.0; int countSame = 0; map.update(map.getGraphics()); while (countSame < 100) { generation++; int ioffset = matingPopulationSize; int mutated = 0; // Mate the chromosomes in the favoured population // with all in the mating population for (int i = 0; i < favoredPopulationSize; i++) { Chromosome cmother = chromosomes[i]; // Select partner from the mating population int father = (int) (0.999999 * Math.random() * (double) matingPopulationSize); Chromosome cfather = chromosomes[father]; mutated += cmother.mate(cfather, chromosomes[ioffset], chromosomes[ioffset + 1]); ioffset += 2; } // The new generation is in the matingPopulation area // move them to the correct area for sort. for (int i = 0; i < matingPopulationSize; i++) { chromosomes[i] = chromosomes[i + matingPopulationSize]; chromosomes[i].calculateCost(cities); } // Now sort the new mating population Chromosome.sortChromosomes(chromosomes, matingPopulationSize); double cost = chromosomes[0].getCost(); dcost = Math.abs(cost - thisCost); thisCost = cost; double mutationRate = 100.0 * (double) mutated / (double) matingPopulationSize; NumberFormat nf = NumberFormat.getInstance(); nf.setMinimumFractionDigits(2); nf.setMinimumFractionDigits(2); status.setText( "Generation " + generation + " Cost " + (int) thisCost + " Mutated " + nf.format(mutationRate) + "%"); if ((int) thisCost == (int) oldCost) { countSame++; } else { countSame = 0; oldCost = thisCost; } map.update(map.getGraphics()); } status.setText("Solution found after " + generation + " generations."); }
public void paint() { map.update(getGraphics()); }