/** * Restores the last saved state of this object. An IllegalArgumentException is thrown if no state * has been saved. * * @see #save */ public void restore() { int maxsbi, minsbi; if (!saved) { throw new IllegalArgumentException(); } // Invalidate last encoded body buffer lbbuf = null; // -- Restore tha data // Use reference caches to minimize array access overhead TagTreeEncoder ttIncl_t_c[][][], ttMaxBP_t_c[][][], ttIncl_t_c_r[][], ttMaxBP_t_c_r[][]; int lblock_t_c[][][], bak_lblock_t_c[][][], prevtIdxs_t_c_r[][], bak_prevtIdxs_t_c_r[][]; // Loop on tiles for (int t = ttIncl.length - 1; t >= 0; t--) { // Loop on components for (int c = ttIncl[t].length - 1; c >= 0; c--) { // Initialize reference caches lblock_t_c = lblock[t][c]; bak_lblock_t_c = bak_lblock[t][c]; ttIncl_t_c = ttIncl[t][c]; ttMaxBP_t_c = ttMaxBP[t][c]; // Loop on resolution levels for (int r = lblock_t_c.length - 1; r >= 0; r--) { // Initialize reference caches ttIncl_t_c_r = ttIncl_t_c[r]; ttMaxBP_t_c_r = ttMaxBP_t_c[r]; prevtIdxs_t_c_r = prevtIdxs[t][c][r]; bak_prevtIdxs_t_c_r = bak_prevtIdxs[t][c][r]; // Loop on subbands minsbi = (r == 0) ? 0 : 1; maxsbi = (r == 0) ? 1 : 4; for (int s = minsbi; s < maxsbi; s++) { // Restore 'lblock' System.arraycopy(bak_lblock_t_c[r][s], 0, lblock_t_c[r][s], 0, lblock_t_c[r][s].length); // Restore 'prevtIdxs' System.arraycopy( bak_prevtIdxs_t_c_r[s], 0, prevtIdxs_t_c_r[s], 0, prevtIdxs_t_c_r[s].length); } // End loop on subbands // Loop on precincts for (int p = ppinfo[t][c][r].length - 1; p >= 0; p--) { if (p < ttIncl_t_c_r.length) { // Loop on subbands for (int s = minsbi; s < maxsbi; s++) { ttIncl_t_c_r[p][s].restore(); ttMaxBP_t_c_r[p][s].restore(); } // End loop on subbands } } // End loop on precincts } // End loop on resolution levels } // End loop on components } // End loop on tiles }
/** * Encodes a packet and returns the buffer containing the encoded packet header. The code-blocks * appear in a 3D array of CBlkRateDistStats, 'cbs'. The first index is the tile index in * lexicographical order, the second index is the subband index (as defined in the Subband class), * and the third index is the code-block index (whithin the subband tile) in lexicographical order * as well. The indexes of the new truncation points for each code-block are specified by the 3D * array of int 'tIndx'. The indices of this array are the same as for cbs. The truncation point * indices in 'tIndx' are the indices of the elements of the 'truncIdxs' array, of the * CBlkRateDistStats class, that give the real truncation points. If a truncation point index is * negative it means that the code-block has not been included in any layer yet. If the truncation * point is less than or equal to the highest truncation point used in previous layers then the * code-block is not included in the packet. Otherwise, if larger, the code-block is included in * the packet. The body of the packet can be obtained with the getLastBodyBuf() and * getLastBodyLen() methods. * * <p>Layers must be coded in increasing order, in consecutive manner, for each tile, component * and resolution level (e.g., layer 1, then layer 2, etc.). For different tile, component and/or * resolution level no particular order must be followed. * * @param ly The layer index (starts at 1). * @param c The component index. * @param r The resolution level * @param t Index of the current tile * @param cbs The 3D array of coded code-blocks. * @param tIndx The truncation point indices for each code-block. * @param hbuf The header buffer. If null a new BitOutputBuffer is created and returned. This * buffer is reset before anything is written to it. * @param bbuf The body buffer. If null a new one is created. If not large enough a new one is * created. * @param pIdx The precinct index. * @return The buffer containing the packet header. */ public BitOutputBuffer encodePacket( int ly, int c, int r, int t, CBlkRateDistStats cbs[][], int tIndx[][], BitOutputBuffer hbuf, byte bbuf[], int pIdx) { int b, i, maxi; int ncb; int thmax; int newtp; int cblen; int prednbits, nbits, deltabits; TagTreeEncoder cur_ttIncl, cur_ttMaxBP; // inclusion and bit-depth tag // trees int cur_prevtIdxs[]; // last encoded truncation points CBlkRateDistStats cur_cbs[]; int cur_tIndx[]; // truncation points to encode int minsb = (r == 0) ? 0 : 1; int maxsb = (r == 0) ? 1 : 4; Point cbCoord = null; SubbandAn root = infoSrc.getAnSubbandTree(t, c); SubbandAn sb; roiInPkt = false; roiLen = 0; int mend, nend; // Checks if a precinct with such an index exists in this resolution // level if (pIdx >= ppinfo[t][c][r].length) { packetWritable = false; return hbuf; } PrecInfo prec = ppinfo[t][c][r][pIdx]; // First, we check if packet is empty (i.e precinct 'pIdx' has no // code-block in any of the subbands) boolean isPrecVoid = true; for (int s = minsb; s < maxsb; s++) { if (prec.nblk[s] == 0) { // The precinct has no code-block in this subband. continue; } else { // The precinct is not empty in at least one subband -> // stop isPrecVoid = false; break; } } if (isPrecVoid) { packetWritable = true; if (hbuf == null) { hbuf = new BitOutputBuffer(); } else { hbuf.reset(); } if (bbuf == null) { lbbuf = bbuf = new byte[1]; } hbuf.writeBit(0); lblen = 0; return hbuf; } if (hbuf == null) { hbuf = new BitOutputBuffer(); } else { hbuf.reset(); } // Invalidate last body buffer lbbuf = null; lblen = 0; // Signal that packet is present hbuf.writeBit(1); for (int s = minsb; s < maxsb; s++) { // Loop on subbands sb = (SubbandAn) root.getSubbandByIdx(r, s); // Go directly to next subband if the precinct has no code-block // in the current one. if (prec.nblk[s] == 0) { continue; } cur_ttIncl = ttIncl[t][c][r][pIdx][s]; cur_ttMaxBP = ttMaxBP[t][c][r][pIdx][s]; cur_prevtIdxs = prevtIdxs[t][c][r][s]; cur_cbs = cbs[s]; cur_tIndx = tIndx[s]; // Set tag tree values for code-blocks in this precinct mend = (prec.cblk[s] == null) ? 0 : prec.cblk[s].length; for (int m = 0; m < mend; m++) { nend = (prec.cblk[s][m] == null) ? 0 : prec.cblk[s][m].length; for (int n = 0; n < nend; n++) { cbCoord = prec.cblk[s][m][n].idx; b = cbCoord.x + cbCoord.y * sb.numCb.x; if (cur_tIndx[b] > cur_prevtIdxs[b] && cur_prevtIdxs[b] < 0) { // First inclusion cur_ttIncl.setValue(m, n, ly - 1); } if (ly == 1) { // First layer, need to set the skip of MSBP cur_ttMaxBP.setValue(m, n, cur_cbs[b].skipMSBP); } } } // Now encode the information for (int m = 0; m < prec.cblk[s].length; m++) { // Vertical code-blocks for (int n = 0; n < prec.cblk[s][m].length; n++) { // Horiz. cblks cbCoord = prec.cblk[s][m][n].idx; b = cbCoord.x + cbCoord.y * sb.numCb.x; // 1) Inclusion information if (cur_tIndx[b] > cur_prevtIdxs[b]) { // Code-block included in this layer if (cur_prevtIdxs[b] < 0) { // First inclusion // Encode layer info cur_ttIncl.encode(m, n, ly, hbuf); // 2) Max bitdepth info. Encode value thmax = cur_cbs[b].skipMSBP + 1; for (i = 1; i <= thmax; i++) { cur_ttMaxBP.encode(m, n, i, hbuf); } // Count body size for packet lblen += cur_cbs[b].truncRates[cur_cbs[b].truncIdxs[cur_tIndx[b]]]; } else { // Already in previous layer // Send "1" bit hbuf.writeBit(1); // Count body size for packet lblen += cur_cbs[b].truncRates[cur_cbs[b].truncIdxs[cur_tIndx[b]]] - cur_cbs[b].truncRates[cur_cbs[b].truncIdxs[cur_prevtIdxs[b]]]; } // 3) Truncation point information if (cur_prevtIdxs[b] < 0) { newtp = cur_cbs[b].truncIdxs[cur_tIndx[b]]; } else { newtp = cur_cbs[b].truncIdxs[cur_tIndx[b]] - cur_cbs[b].truncIdxs[cur_prevtIdxs[b]] - 1; } // Mix of switch and if is faster switch (newtp) { case 0: hbuf.writeBit(0); // Send one "0" bit break; case 1: hbuf.writeBits(2, 2); // Send one "1" and one "0" break; case 2: case 3: case 4: // Send two "1" bits followed by 2 bits // representation of newtp-2 hbuf.writeBits((3 << 2) | (newtp - 2), 4); break; default: if (newtp <= 35) { // Send four "1" bits followed by a five bits // representation of newtp-5 hbuf.writeBits((15 << 5) | (newtp - 5), 9); } else if (newtp <= 163) { // Send nine "1" bits followed by a seven bits // representation of newtp-36 hbuf.writeBits((511 << 7) | (newtp - 36), 16); } else { throw new ArithmeticException( "Maximum number " + "of truncation " + "points exceeded"); } } } else { // Block not included in this layer if (cur_prevtIdxs[b] >= 0) { // Already in previous layer. Send "0" bit hbuf.writeBit(0); } else { // Not in any previous layers cur_ttIncl.encode(m, n, ly, hbuf); } // Go to the next one. continue; } // Code-block length // We need to compute the maximum number of bits needed to // signal the length of each terminated segment and the // final truncation point. newtp = 1; maxi = cur_cbs[b].truncIdxs[cur_tIndx[b]]; cblen = (cur_prevtIdxs[b] < 0) ? 0 : cur_cbs[b].truncRates[cur_cbs[b].truncIdxs[cur_prevtIdxs[b]]]; // Loop on truncation points i = (cur_prevtIdxs[b] < 0) ? 0 : cur_cbs[b].truncIdxs[cur_prevtIdxs[b]] + 1; int minbits = 0; for (; i < maxi; i++, newtp++) { // If terminated truncation point calculate length if (cur_cbs[b].isTermPass != null && cur_cbs[b].isTermPass[i]) { // Calculate length cblen = cur_cbs[b].truncRates[i] - cblen; // Calculate number of needed bits prednbits = lblock[t][c][r][s][b] + MathUtil.log2(newtp); minbits = ((cblen > 0) ? MathUtil.log2(cblen) : 0) + 1; // Update Lblock increment if needed for (int j = prednbits; j < minbits; j++) { lblock[t][c][r][s][b]++; hbuf.writeBit(1); } // Initialize for next length newtp = 0; cblen = cur_cbs[b].truncRates[i]; } } // Last truncation point length always sent // Calculate length cblen = cur_cbs[b].truncRates[i] - cblen; // Calculate number of bits prednbits = lblock[t][c][r][s][b] + MathUtil.log2(newtp); minbits = ((cblen > 0) ? MathUtil.log2(cblen) : 0) + 1; // Update Lblock increment if needed for (int j = prednbits; j < minbits; j++) { lblock[t][c][r][s][b]++; hbuf.writeBit(1); } // End of comma-code increment hbuf.writeBit(0); // There can be terminated several segments, send length // info for all terminated truncation points in addition // to final one newtp = 1; maxi = cur_cbs[b].truncIdxs[cur_tIndx[b]]; cblen = (cur_prevtIdxs[b] < 0) ? 0 : cur_cbs[b].truncRates[cur_cbs[b].truncIdxs[cur_prevtIdxs[b]]]; // Loop on truncation points and count the groups i = (cur_prevtIdxs[b] < 0) ? 0 : cur_cbs[b].truncIdxs[cur_prevtIdxs[b]] + 1; for (; i < maxi; i++, newtp++) { // If terminated truncation point, send length if (cur_cbs[b].isTermPass != null && cur_cbs[b].isTermPass[i]) { cblen = cur_cbs[b].truncRates[i] - cblen; nbits = MathUtil.log2(newtp) + lblock[t][c][r][s][b]; hbuf.writeBits(cblen, nbits); // Initialize for next length newtp = 0; cblen = cur_cbs[b].truncRates[i]; } } // Last truncation point length is always signalled // First calculate number of bits needed to signal // Calculate length cblen = cur_cbs[b].truncRates[i] - cblen; nbits = MathUtil.log2(newtp) + lblock[t][c][r][s][b]; hbuf.writeBits(cblen, nbits); } // End loop on horizontal code-blocks } // End loop on vertical code-blocks } // End loop on subband // -> Copy the data to the body buffer // Ensure size for body data if (bbuf == null || bbuf.length < lblen) { bbuf = new byte[lblen]; } lbbuf = bbuf; lblen = 0; for (int s = minsb; s < maxsb; s++) { // Loop on subbands sb = (SubbandAn) root.getSubbandByIdx(r, s); cur_prevtIdxs = prevtIdxs[t][c][r][s]; cur_cbs = cbs[s]; cur_tIndx = tIndx[s]; ncb = cur_prevtIdxs.length; mend = (prec.cblk[s] == null) ? 0 : prec.cblk[s].length; for (int m = 0; m < mend; m++) { // Vertical code-blocks nend = (prec.cblk[s][m] == null) ? 0 : prec.cblk[s][m].length; for (int n = 0; n < nend; n++) { // Horiz. cblks cbCoord = prec.cblk[s][m][n].idx; b = cbCoord.x + cbCoord.y * sb.numCb.x; if (cur_tIndx[b] > cur_prevtIdxs[b]) { // Block included in this precinct -> Copy data to // body buffer and get code-size if (cur_prevtIdxs[b] < 0) { cblen = cur_cbs[b].truncRates[cur_cbs[b].truncIdxs[cur_tIndx[b]]]; System.arraycopy(cur_cbs[b].data, 0, lbbuf, lblen, cblen); } else { cblen = cur_cbs[b].truncRates[cur_cbs[b].truncIdxs[cur_tIndx[b]]] - cur_cbs[b].truncRates[cur_cbs[b].truncIdxs[cur_prevtIdxs[b]]]; System.arraycopy( cur_cbs[b].data, cur_cbs[b].truncRates[cur_cbs[b].truncIdxs[cur_prevtIdxs[b]]], lbbuf, lblen, cblen); } lblen += cblen; // Verifies if this code-block contains new ROI // information if (cur_cbs[b].nROIcoeff != 0 && (cur_prevtIdxs[b] == -1 || cur_cbs[b].truncIdxs[cur_prevtIdxs[b]] <= cur_cbs[b].nROIcp - 1)) { roiInPkt = true; roiLen = lblen; } // Update truncation point cur_prevtIdxs[b] = cur_tIndx[b]; } } // End loop on horizontal code-blocks } // End loop on vertical code-blocks } // End loop on subbands packetWritable = true; // Must never happen if (hbuf.getLength() == 0) { throw new Error("You have found a bug in PktEncoder, method:" + " encodePacket"); } return hbuf; }
/** * Saves the current state of this object. The last saved state can be restored with the restore() * method. * * @see #restore */ public void save() { int maxsbi, minsbi; // Have we done any save yet? if (bak_lblock == null) { // Allocate backup buffers bak_lblock = new int[ttIncl.length][][][][]; bak_prevtIdxs = new int[ttIncl.length][][][][]; for (int t = ttIncl.length - 1; t >= 0; t--) { bak_lblock[t] = new int[ttIncl[t].length][][][]; bak_prevtIdxs[t] = new int[ttIncl[t].length][][][]; for (int c = ttIncl[t].length - 1; c >= 0; c--) { bak_lblock[t][c] = new int[lblock[t][c].length][][]; bak_prevtIdxs[t][c] = new int[ttIncl[t][c].length][][]; for (int r = lblock[t][c].length - 1; r >= 0; r--) { bak_lblock[t][c][r] = new int[lblock[t][c][r].length][]; bak_prevtIdxs[t][c][r] = new int[prevtIdxs[t][c][r].length][]; minsbi = (r == 0) ? 0 : 1; maxsbi = (r == 0) ? 1 : 4; for (int s = minsbi; s < maxsbi; s++) { bak_lblock[t][c][r][s] = new int[lblock[t][c][r][s].length]; bak_prevtIdxs[t][c][r][s] = new int[prevtIdxs[t][c][r][s].length]; } } } } } // -- Save the data // Use reference caches to minimize array access overhead TagTreeEncoder ttIncl_t_c[][][], ttMaxBP_t_c[][][], ttIncl_t_c_r[][], ttMaxBP_t_c_r[][]; int lblock_t_c[][][], bak_lblock_t_c[][][], prevtIdxs_t_c_r[][], bak_prevtIdxs_t_c_r[][]; // Loop on tiles for (int t = ttIncl.length - 1; t >= 0; t--) { // Loop on components for (int c = ttIncl[t].length - 1; c >= 0; c--) { // Initialize reference caches lblock_t_c = lblock[t][c]; bak_lblock_t_c = bak_lblock[t][c]; ttIncl_t_c = ttIncl[t][c]; ttMaxBP_t_c = ttMaxBP[t][c]; // Loop on resolution levels for (int r = lblock_t_c.length - 1; r >= 0; r--) { // Initialize reference caches ttIncl_t_c_r = ttIncl_t_c[r]; ttMaxBP_t_c_r = ttMaxBP_t_c[r]; prevtIdxs_t_c_r = prevtIdxs[t][c][r]; bak_prevtIdxs_t_c_r = bak_prevtIdxs[t][c][r]; // Loop on subbands minsbi = (r == 0) ? 0 : 1; maxsbi = (r == 0) ? 1 : 4; for (int s = minsbi; s < maxsbi; s++) { // Save 'lblock' System.arraycopy(lblock_t_c[r][s], 0, bak_lblock_t_c[r][s], 0, lblock_t_c[r][s].length); // Save 'prevtIdxs' System.arraycopy( prevtIdxs_t_c_r[s], 0, bak_prevtIdxs_t_c_r[s], 0, prevtIdxs_t_c_r[s].length); } // End loop on subbands // Loop on precincts for (int p = ppinfo[t][c][r].length - 1; p >= 0; p--) { if (p < ttIncl_t_c_r.length) { // Loop on subbands for (int s = minsbi; s < maxsbi; s++) { ttIncl_t_c_r[p][s].save(); ttMaxBP_t_c_r[p][s].save(); } // End loop on subbands } } // End loop on precincts } // End loop on resolutions } // End loop on components } // End loop on tiles // Set the saved state saved = true; }