Exemplo n.º 1
0
  /**
   * Constructs a test using a given data set. If a data set is provided (that is, a tabular data
   * set), fourth moment statistics can be calculated (p. 160); otherwise, it must be assumed that
   * the data are multivariate Gaussian.
   */
  public DeltaSextadTest(DataSet dataSet) {
    if (dataSet == null) {
      throw new NullPointerException();
    }

    if (!dataSet.isContinuous()) {
      throw new IllegalArgumentException();
    }

    this.cov = new CovarianceMatrix(dataSet);

    List<DataSet> data1 = new ArrayList<DataSet>();
    data1.add(dataSet);
    List<DataSet> data2 = DataUtils.center(data1);

    this.dataSet = data2.get(0);

    this.data = this.dataSet.getDoubleData().transpose().toArray();
    this.N = dataSet.getNumRows();
    this.variables = dataSet.getVariables();
    this.numVars = dataSet.getNumColumns();

    this.variablesHash = new HashMap<Node, Integer>();

    for (int i = 0; i < variables.size(); i++) {
      variablesHash.put(variables.get(i), i);
    }

    this.means = new double[numVars];

    for (int i = 0; i < numVars; i++) {
      means[i] = mean(data[i], N);
    }
  }
Exemplo n.º 2
0
  /** Find the dataModel model. (If it's a list, take the one that's selected.) */
  private DataModel getSelectedDataModel(DataWrapper dataWrapper) {
    DataModelList dataModelList = dataWrapper.getDataModelList();

    if (dataModelList.size() > 1) {
      return dataModelList;
    }

    DataModel dataModel = dataWrapper.getSelectedDataModel();

    if (dataModel instanceof DataSet) {
      DataSet dataSet = (DataSet) dataModel;

      if (dataSet.isDiscrete()) {
        return dataSet;
      } else if (dataSet.isContinuous()) {
        return dataSet;
      } else if (dataSet.isMixed()) {
        return dataSet;
      }

      throw new IllegalArgumentException(
          "<html>"
              + "This data set contains a mixture of discrete and continuous "
              + "<br>columns; there are no algorithm in Tetrad currently to "
              + "<br>search over such data sets."
              + "</html>");
    } else if (dataModel instanceof ICovarianceMatrix) {
      return dataModel;
    } else if (dataModel instanceof TimeSeriesData) {
      return dataModel;
    }

    throw new IllegalArgumentException("Unexpected dataModel source: " + dataModel);
  }
Exemplo n.º 3
0
  /**
   * Executes the algorithm, producing (at least) a result workbench. Must be implemented in the
   * extending class.
   */
  public void execute() {
    DataModel source = getDataModel();

    if (!(source instanceof DataSet)) {
      throw new IllegalArgumentException("Expecting a rectangular data set.");
    }

    DataSet data = (DataSet) source;

    if (!data.isContinuous()) {
      throw new IllegalArgumentException("Expecting a continuous data set.");
    }

    //        Lingam_old lingam = new Lingam_old();
    //        lingam.setPruningDone(true);
    //        lingam.setAlpha(getParams().getIndTestParams().getAlpha());
    //        GraphWithParameters result = lingam.lingam(data);
    //        Graph graph = result.getGraph();

    Lingam lingam = new Lingam();
    LingamParams params = (LingamParams) getParams();
    lingam.setPruneFactor(params.getPruneFactor());
    Graph graph = lingam.search(data);

    setResultGraph(graph);

    if (getSourceGraph() != null) {
      GraphUtils.arrangeBySourceGraph(graph, getSourceGraph());
    } else {
      GraphUtils.circleLayout(graph, 200, 200, 150);
    }
  }
  public FindOneFactorClustersWithCausalIndicators(
      DataSet dataSet, TestType testType, double alpha) {
    if (dataSet.isContinuous()) {
      this.variables = dataSet.getVariables();
      this.test = new ContinuousTetradTest(dataSet, testType, alpha);
      this.indTest = new IndTestFisherZ(dataSet, alpha);
      this.alpha = alpha;
      this.testType = testType;
      this.dataModel = dataSet;

      if (testType == TestType.TETRAD_DELTA) {
        deltaTest = new DeltaTetradTest(dataSet);
        deltaTest.setCacheFourthMoments(false);
      }

      this.cov = new CovarianceMatrix(dataSet);
    } else if (dataSet.isDiscrete()) {
      this.variables = dataSet.getVariables();
      this.test = new DiscreteTetradTest(dataSet, alpha);
      this.indTest = new IndTestChiSquare(dataSet, alpha);
      this.alpha = alpha;
      this.testType = testType;
      this.dataModel = dataSet;

      if (testType == TestType.TETRAD_DELTA) {
        deltaTest = new DeltaTetradTest(dataSet);
        deltaTest.setCacheFourthMoments(false);
      }
    }
  }
Exemplo n.º 5
0
  private void calcStats() {
    //        Graph resultGraph = getAlgorithmRunner().getResultGraph();
    IGesRunner runner = (IGesRunner) getAlgorithmRunner();

    if (runner.getTopGraphs().isEmpty()) {
      throw new IllegalArgumentException(
          "No patterns were recorded. Please adjust the number of " + "patterns to store.");
    }

    Graph resultGraph = runner.getTopGraphs().get(runner.getIndex()).getGraph();

    if (getAlgorithmRunner().getDataModel() instanceof DataSet) {

      // resultGraph may be the output of a PC search.
      // Such graphs sometimes contain doubly directed edges.

      // /We converte such edges to directed edges here.
      // For the time being an orientation is arbitrarily selected.
      Set<Edge> allEdges = resultGraph.getEdges();

      for (Edge edge : allEdges) {
        if (edge.getEndpoint1() == Endpoint.ARROW && edge.getEndpoint2() == Endpoint.ARROW) {
          // Option 1 orient it from node1 to node2
          resultGraph.setEndpoint(edge.getNode1(), edge.getNode2(), Endpoint.ARROW);

          // Option 2 remove such edges:
          resultGraph.removeEdge(edge);
        }
      }

      Pattern pattern = new Pattern(resultGraph);
      PatternToDag ptd = new PatternToDag(pattern);
      Graph dag = ptd.patternToDagMeekRules();

      DataSet dataSet = (DataSet) getAlgorithmRunner().getDataModel();
      String report;

      if (dataSet.isContinuous()) {
        report = reportIfContinuous(dag, dataSet);
      } else if (dataSet.isDiscrete()) {
        report = reportIfDiscrete(dag, dataSet);
      } else {
        throw new IllegalArgumentException("");
      }

      JScrollPane dagWorkbenchScroll = dagWorkbenchScroll(dag);
      modelStatsText.setLineWrap(true);
      modelStatsText.setWrapStyleWord(true);
      modelStatsText.setText(report);

      removeStatsTabs();
      tabbedPane.addTab("DAG in pattern", dagWorkbenchScroll);
      tabbedPane.addTab("DAG Model Statistics", modelStatsText);
    }
  }
  /**
   * Constructs a new Independence test which checks independence facts based on the correlation
   * matrix implied by the given data set (must be continuous). The given significance level is
   * used.
   *
   * @param dataSet A data set containing only continuous columns.
   * @param alpha The alpha level of the test.
   */
  public IndTestFisherZShortTriangular(DataSet dataSet, double alpha) {
    if (!(dataSet.isContinuous())) {
      throw new IllegalArgumentException("Data set must be continuous.");
    }

    this.covMatrix = new ShortTriangularMatrix(dataSet.getNumColumns());
    this.covMatrix.becomeCorrelationMatrix(dataSet);
    this.variables = dataSet.getVariables();
    setAlpha(alpha);

    this.deterministicTest = new IndTestFisherZGeneralizedInverse(dataSet, alpha);
    this.dataSet = dataSet;
  }
  /**
   * Executes the algorithm, producing (at least) a result workbench. Must be implemented in the
   * extending class.
   */
  public void execute() {
    DataModel source = getDataModel();

    if (!(source instanceof DataSet)) {
      throw new IllegalArgumentException("Expecting a rectangular data set.");
    }

    DataSet data = (DataSet) source;

    if (!data.isContinuous()) {
      throw new IllegalArgumentException("Expecting a continuous data set.");
    }

    Lingam lingam = new Lingam();
    lingam.setAlpha(getParams().getIndTestParams().getAlpha());
    lingam.setPruningDone(true);
    lingam.setAlpha(getParams().getIndTestParams().getAlpha());
    GraphWithParameters result = lingam.lingam(data);
    setResultGraph(result.getGraph());
    GraphUtils.arrangeBySourceGraph(getResultGraph(), getSourceGraph());
  }