/**
   * Constructs a new Fisher Z independence test with the listed arguments.
   *
   * @param data A 2D continuous data set with no missing values.
   * @param variables A list of variables, a subset of the variables of <code>data</code>.
   * @param alpha The significance cutoff level. p values less than alpha will be reported as
   *     dependent.
   */
  public IndTestFisherZShortTriangular(TetradMatrix data, List<Node> variables, double alpha) {
    DataSet dataSet = ColtDataSet.makeContinuousData(variables, data);
    this.covMatrix = new ShortTriangularMatrix(dataSet.getNumColumns());
    this.covMatrix.becomeCorrelationMatrix(dataSet);
    this.variables = dataSet.getVariables();
    setAlpha(alpha);

    this.deterministicTest = new IndTestFisherZGeneralizedInverse(dataSet, alpha);
  }
Exemplo n.º 2
0
  /**
   * @param sampleSize The sample size of the desired data set.
   * @param latentDataSaved True if latent variables should be included in the data set.
   * @return This returns a standardized data set simulated from the model, using the reduced form
   *     method.
   */
  public DataSet simulateDataReducedForm(int sampleSize, boolean latentDataSaved) {
    int numVars = getVariableNodes().size();

    // Calculate inv(I - edgeCoef)
    TetradMatrix edgeCoef = edgeCoef().copy().transpose();

    //        TetradMatrix iMinusB = TetradAlgebra.identity(edgeCoef.rows());
    //        iMinusB.assign(edgeCoef, Functions.minus);

    TetradMatrix iMinusB = TetradAlgebra.identity(edgeCoef.rows()).minus(edgeCoef);

    TetradMatrix inv = iMinusB.inverse();

    // Pick error values e, for each calculate inv * e.
    TetradMatrix sim = new TetradMatrix(sampleSize, numVars);

    // Generate error data with the right variances and covariances, then override this
    // with error data for varaibles that have special distributions defined. Not ideal,
    // but not sure what else to do at the moment. It's better than not taking covariances
    // into account!
    TetradMatrix cholesky = MatrixUtils.choleskyC(errCovar(errorVariances()));

    for (int i = 0; i < sampleSize; i++) {
      TetradVector e = new TetradVector(exogenousData(cholesky, RandomUtil.getInstance()));
      TetradVector ePrime = inv.times(e);
      sim.assignRow(i, ePrime); // sim.viewRow(i).assign(ePrime);
    }

    DataSet fullDataSet = ColtDataSet.makeContinuousData(getVariableNodes(), sim);

    if (latentDataSaved) {
      return fullDataSet;
    } else {
      return DataUtils.restrictToMeasured(fullDataSet);
    }
  }