/**
   * To reduce the search space we will only consider routes that start and end at one city
   * (whichever is first in the collection). All other possible routes are equivalent to one of
   * these routes since start city is irrelevant in determining the shortest cycle.
   *
   * @param cities The list of destinations, each of which must be visited once.
   * @param progressListener Call-back for receiving the status of the algorithm as it progresses.
   *     May be null.
   * @return The shortest route that visits each of the specified cities once.
   */
  public List<String> calculateShortestRoute(
      Collection<String> cities, ProgressListener progressListener) {
    Iterator<String> iterator = cities.iterator();
    String startCity = iterator.next();
    Collection<String> destinations = new ArrayList<String>(cities.size() - 1);
    while (iterator.hasNext()) {
      destinations.add(iterator.next());
    }

    FitnessEvaluator<List<String>> evaluator = new RouteEvaluator(distances);
    PermutationGenerator<String> generator = new PermutationGenerator<String>(destinations);
    long totalPermutations = generator.getTotalPermutations();
    long count = 0;
    List<String> shortestRoute = null;
    double shortestDistance = Double.POSITIVE_INFINITY;
    List<String> currentRoute = new ArrayList<String>(cities.size());
    while (generator.hasMore()) {
      List<String> route = generator.nextPermutationAsList(currentRoute);
      route.add(0, startCity);
      double distance = evaluator.getFitness(route, null);
      if (distance < shortestDistance) {
        shortestDistance = distance;
        shortestRoute = new ArrayList<String>(route);
      }
      ++count;
      if (count % 1000 == 0 && progressListener != null) {
        progressListener.updateProgress(((double) count) / totalPermutations * 100);
      }
    }
    if (progressListener != null) {
      progressListener.updateProgress(100); // Finished.
    }
    return shortestRoute;
  }
Exemplo n.º 2
0
  public void analyzeInnerClasses(ProgressListener pl, double done, double scale) {
    double subScale = scale / innerComplexity;
    // If output should be immediate, we delay analyzation to output.
    // Note that this may break anonymous classes, but the user
    // has been warned.
    if ((Options.options & Options.OPTION_IMMEDIATE) != 0) return;

    // Now analyze the inner classes.
    for (int j = 0; j < inners.length; j++) {
      if (pl != null) {
        double innerCompl = inners[j].getComplexity() * subScale;
        if (innerCompl > STEP_COMPLEXITY) {
          double innerscale = subScale * inners[j].methodComplexity;
          inners[j].analyze(pl, done, innerscale);
          inners[j].analyzeInnerClasses(null, done + innerscale, innerCompl - innerscale);
        } else {
          pl.updateProgress(done, inners[j].name);
          inners[j].analyze(null, 0.0, 0.0);
          inners[j].analyzeInnerClasses(null, 0.0, 0.0);
        }
        done += innerCompl;
      } else {
        inners[j].analyze(null, 0.0, 0.0);
        inners[j].analyzeInnerClasses(null, 0.0, 0.0);
      }
    }

    // Now analyze the method scoped classes.
    for (int j = 0; j < methods.length; j++) methods[j].analyzeInnerClasses();
  }
Exemplo n.º 3
0
 public void dumpJavaFile(TabbedPrintWriter writer, ProgressListener pl) throws IOException {
   imports.init(clazz.getName());
   LocalInfo.init();
   initialize();
   double done = 0.05;
   double scale = (0.75) * methodComplexity / (methodComplexity + innerComplexity);
   analyze(pl, INITIALIZE_COMPLEXITY, scale);
   done += scale;
   analyzeInnerClasses(pl, done, 0.8 - done);
   makeDeclaration(new SimpleSet());
   imports.dumpHeader(writer);
   dumpSource(writer, pl, 0.8, 0.2);
   if (pl != null) pl.updateProgress(1.0, name);
 }
Exemplo n.º 4
0
  public void dumpBlock(TabbedPrintWriter writer, ProgressListener pl, double done, double scale)
      throws IOException {
    double subScale = scale / getComplexity();
    writer.pushScope(this);
    boolean needFieldNewLine = false;
    boolean needNewLine = false;
    Set declared = null;
    if ((Options.options & Options.OPTION_IMMEDIATE) != 0) declared = new SimpleSet();
    for (int i = 0; i < fields.length; i++) {
      if (blockInitializers[i] != null) {
        if (needNewLine) writer.println();
        writer.openBrace();
        writer.tab();
        blockInitializers[i].dumpSource(writer);
        writer.untab();
        writer.closeBrace();
        needFieldNewLine = needNewLine = true;
      }
      if ((Options.options & Options.OPTION_IMMEDIATE) != 0) {
        // We now do the analyzation we skipped before.
        fields[i].analyze();
        fields[i].makeDeclaration(declared);
      }
      if (fields[i].skipWriting()) continue;
      if (needFieldNewLine) writer.println();
      fields[i].dumpSource(writer);
      needNewLine = true;
    }
    if (blockInitializers[fields.length] != null) {
      if (needNewLine) writer.println();
      writer.openBrace();
      writer.tab();
      blockInitializers[fields.length].dumpSource(writer);
      writer.untab();
      writer.closeBrace();
      needNewLine = true;
    }
    for (int i = 0; i < inners.length; i++) {
      if (needNewLine) writer.println();

      if ((Options.options & Options.OPTION_IMMEDIATE) != 0) {
        // We now do the analyzation we skipped before.
        inners[i].analyze(null, 0.0, 0.0);
        inners[i].analyzeInnerClasses(null, 0.0, 0.0);
        inners[i].makeDeclaration(declared);
      }

      if (pl != null) {
        double innerCompl = inners[i].getComplexity() * subScale;
        if (innerCompl > STEP_COMPLEXITY) inners[i].dumpSource(writer, pl, done, innerCompl);
        else {
          pl.updateProgress(done, name);
          inners[i].dumpSource(writer);
        }
        done += innerCompl;
      } else inners[i].dumpSource(writer);
      needNewLine = true;
    }
    for (int i = 0; i < methods.length; i++) {
      if ((Options.options & Options.OPTION_IMMEDIATE) != 0) {
        // We now do the analyzation we skipped before.
        if (!methods[i].isConstructor()) methods[i].analyze(null, 0.0, 0.0);
        methods[i].analyzeInnerClasses();
        methods[i].makeDeclaration(declared);
      }

      if (methods[i].skipWriting()) continue;
      if (needNewLine) writer.println();

      if (pl != null) {
        double methodCompl = methods[i].getComplexity() * subScale;
        pl.updateProgress(done, methods[i].getName());
        methods[i].dumpSource(writer);
        done += methodCompl;
      } else methods[i].dumpSource(writer);
      needNewLine = true;
    }
    writer.popScope();
    clazz.dropInfo(clazz.KNOWNATTRIBS | clazz.UNKNOWNATTRIBS);
  }
Exemplo n.º 5
0
  public void analyze(ProgressListener pl, double done, double scale) {
    if (GlobalOptions.verboseLevel > 0) GlobalOptions.err.println("Class " + name);
    double subScale = scale / methodComplexity;
    if (pl != null) pl.updateProgress(done, name);

    imports.useClass(clazz);
    if (clazz.getSuperclass() != null) imports.useClass(clazz.getSuperclass());
    ClassInfo[] interfaces = clazz.getInterfaces();
    for (int j = 0; j < interfaces.length; j++) imports.useClass(interfaces[j]);

    if (fields == null) {
      /* This means that the class could not be loaded.
       * give up.
       */
      return;
    }

    // First analyze constructors and synthetic fields:
    constrAna = null;
    if (constructors.length > 0) {
      for (int j = 0; j < constructors.length; j++) {
        if (pl != null) {
          double constrCompl = constructors[j].getComplexity() * subScale;
          if (constrCompl > STEP_COMPLEXITY) constructors[j].analyze(pl, done, constrCompl);
          else {
            pl.updateProgress(done, name);
            constructors[j].analyze(null, 0.0, 0.0);
          }
          done += constrCompl;
        } else constructors[j].analyze(null, 0.0, 0.0);
      }
      constrAna = new TransformConstructors(this, false, constructors);
      constrAna.removeSynthInitializers();
    }
    if (staticConstructor != null) {
      if (pl != null) {
        double constrCompl = staticConstructor.getComplexity() * subScale;
        if (constrCompl > STEP_COMPLEXITY) staticConstructor.analyze(pl, done, constrCompl);
        else {
          pl.updateProgress(done, name);
          staticConstructor.analyze(null, 0.0, 0.0);
        }
        done += constrCompl;
      } else staticConstructor.analyze(null, 0.0, 0.0);
    }

    // If output should be immediate, we delay analyzation to output.
    // Note that this may break anonymous classes, but the user
    // has been warned.
    if ((Options.options & Options.OPTION_IMMEDIATE) != 0) return;

    // Analyze fields
    for (int j = 0; j < fields.length; j++) fields[j].analyze();

    // Now analyze remaining methods.
    for (int j = 0; j < methods.length; j++) {
      if (!methods[j].isConstructor())
        if (pl != null) {
          double methodCompl = methods[j].getComplexity() * subScale;
          if (methodCompl > STEP_COMPLEXITY) methods[j].analyze(pl, done, methodCompl);
          else {
            pl.updateProgress(done, methods[j].getName());
            methods[j].analyze(null, 0.0, 0.0);
          }
          done += methodCompl;
        } else methods[j].analyze(null, 0.0, 0.0);
    }
  }
  /**
   * Construct the singular value decomposition
   *
   * @param Arg Rectangular matrix
   * @return Structure to access U, S and V.
   */
  public SingularValueDecomposition(
      double[][] A, ProgressListener progressListener, ThreadMaster threadMaster) {

    // Derived from LINPACK code.
    // Initialize.
    m = A.length;
    n = A[0].length;
    int nu = Math.min(m, n);
    s = new double[Math.min(m + 1, n)];
    U = new double[m][nu];
    V = new double[n][n];
    double[] e = new double[n];
    double[] work = new double[m];
    boolean wantu = true;
    boolean wantv = true;

    // Reduce A to bidiagonal form, storing the diagonal elements
    // in s and the super-diagonal elements in e.

    int nct = Math.min(m - 1, n);
    int nrt = Math.max(0, Math.min(n - 2, m));

    if (progressListener != null)
      progressListener.startProgress("Initializing SVD...", 0, Math.max(nct, nrt));

    for (int k = 0; k < Math.max(nct, nrt); k++) {
      if (progressListener != null) progressListener.updateProgress(k);
      if (threadMaster != null && threadMaster.threadMustDie()) return;

      if (k < nct) {

        // Compute the transformation for the k-th column and
        // place the k-th diagonal in s[k].
        // Compute 2-norm of k-th column without under/overflow.
        s[k] = 0;
        for (int i = k; i < m; i++) {
          s[k] = hypot(s[k], A[i][k]);
        }
        if (s[k] != 0.0) {
          if (A[k][k] < 0.0) {
            s[k] = -s[k];
          }
          for (int i = k; i < m; i++) {
            A[i][k] /= s[k];
          }
          A[k][k] += 1.0;
        }
        s[k] = -s[k];
      }
      for (int j = k + 1; j < n; j++) {
        if ((k < nct) & (s[k] != 0.0)) {

          // Apply the transformation.

          double t = 0;
          for (int i = k; i < m; i++) {
            t += A[i][k] * A[i][j];
          }
          t = -t / A[k][k];
          for (int i = k; i < m; i++) {
            A[i][j] += t * A[i][k];
          }
        }

        // Place the k-th row of A into e for the
        // subsequent calculation of the row transformation.

        e[j] = A[k][j];
      }
      if (wantu & (k < nct)) {

        // Place the transformation in U for subsequent back
        // multiplication.

        for (int i = k; i < m; i++) {
          U[i][k] = A[i][k];
        }
      }
      if (k < nrt) {

        // Compute the k-th row transformation and place the
        // k-th super-diagonal in e[k].
        // Compute 2-norm without under/overflow.
        e[k] = 0;
        for (int i = k + 1; i < n; i++) {
          e[k] = hypot(e[k], e[i]);
        }
        if (e[k] != 0.0) {
          if (e[k + 1] < 0.0) {
            e[k] = -e[k];
          }
          for (int i = k + 1; i < n; i++) {
            e[i] /= e[k];
          }
          e[k + 1] += 1.0;
        }
        e[k] = -e[k];
        if ((k + 1 < m) & (e[k] != 0.0)) {

          // Apply the transformation.

          for (int i = k + 1; i < m; i++) {
            work[i] = 0.0;
          }
          for (int j = k + 1; j < n; j++) {
            for (int i = k + 1; i < m; i++) {
              work[i] += e[j] * A[i][j];
            }
          }
          for (int j = k + 1; j < n; j++) {
            double t = -e[j] / e[k + 1];
            for (int i = k + 1; i < m; i++) {
              A[i][j] += t * work[i];
            }
          }
        }
        if (wantv) {

          // Place the transformation in V for subsequent
          // back multiplication.

          for (int i = k + 1; i < n; i++) {
            V[i][k] = e[i];
          }
        }
      }
    }

    // Set up the final bidiagonal matrix or order p.

    int p = Math.min(n, m + 1);
    if (nct < n) {
      s[nct] = A[nct][nct];
    }
    if (m < p) {
      s[p - 1] = 0.0;
    }
    if (nrt + 1 < p) {
      e[nrt] = A[nrt][p - 1];
    }
    e[p - 1] = 0.0;

    // If required, generate U.

    if (wantu) {
      if (progressListener != null)
        progressListener.startProgress("generating eigenvalues...", 0, nct);

      for (int j = nct; j < nu; j++) {
        for (int i = 0; i < m; i++) {
          U[i][j] = 0.0;
        }
        U[j][j] = 1.0;
      }
      for (int k = nct - 1; k >= 0; k--) {
        if (progressListener != null) progressListener.updateProgress(nct - k);
        if (threadMaster != null && threadMaster.threadMustDie()) return;

        if (s[k] != 0.0) {
          for (int j = k + 1; j < nu; j++) {
            double t = 0;
            for (int i = k; i < m; i++) {
              t += U[i][k] * U[i][j];
            }
            t = -t / U[k][k];
            for (int i = k; i < m; i++) {
              U[i][j] += t * U[i][k];
            }
          }
          for (int i = k; i < m; i++) {
            U[i][k] = -U[i][k];
          }
          U[k][k] = 1.0 + U[k][k];
          for (int i = 0; i < k - 1; i++) {
            U[i][k] = 0.0;
          }
        } else {
          for (int i = 0; i < m; i++) {
            U[i][k] = 0.0;
          }
          U[k][k] = 1.0;
        }
      }
    }

    // If required, generate V.

    if (wantv) {
      if (progressListener != null)
        progressListener.startProgress("generating eigenvectors...", 0, n);

      for (int k = n - 1; k >= 0; k--) {
        if (progressListener != null) progressListener.updateProgress(n - k);
        if (threadMaster != null && threadMaster.threadMustDie()) return;

        if ((k < nrt) & (e[k] != 0.0)) {
          for (int j = k + 1; j < nu; j++) {
            double t = 0;
            for (int i = k + 1; i < n; i++) {
              t += V[i][k] * V[i][j];
            }
            t = -t / V[k + 1][k];
            for (int i = k + 1; i < n; i++) {
              V[i][j] += t * V[i][k];
            }
          }
        }
        for (int i = 0; i < n; i++) {
          V[i][k] = 0.0;
        }
        V[k][k] = 1.0;
      }
    }

    // Main iteration loop for the singular values.

    int pp = p - 1;
    int iter = 0;
    double eps = Math.pow(2.0, -52.0);

    if (progressListener != null)
      progressListener.startProgress("locating negligible elements...", 0, pp + 1);

    while (p > 0) {
      if (progressListener != null) progressListener.updateProgress(pp - p);
      if (threadMaster != null && threadMaster.threadMustDie()) return;

      int k, kase;

      // Here is where a test for too many iterations would go.

      // This section of the program inspects for
      // negligible elements in the s and e arrays.  On
      // completion the variables kase and k are set as follows.

      // kase = 1     if s(p) and e[k-1] are negligible and k<p
      // kase = 2     if s(k) is negligible and k<p
      // kase = 3     if e[k-1] is negligible, k<p, and
      //              s(k), ..., s(p) are not negligible (qr step).
      // kase = 4     if e(p-1) is negligible (convergence).

      for (k = p - 2; k >= -1; k--) {
        if (k == -1) {
          break;
        }
        if (Math.abs(e[k]) <= eps * (Math.abs(s[k]) + Math.abs(s[k + 1]))) {
          e[k] = 0.0;
          break;
        }
      }
      if (k == p - 2) {
        kase = 4;
      } else {
        int ks;
        for (ks = p - 1; ks >= k; ks--) {
          if (ks == k) {
            break;
          }
          double t = (ks != p ? Math.abs(e[ks]) : 0.) + (ks != k + 1 ? Math.abs(e[ks - 1]) : 0.);
          if (Math.abs(s[ks]) <= eps * t) {
            s[ks] = 0.0;
            break;
          }
        }
        if (ks == k) {
          kase = 3;
        } else if (ks == p - 1) {
          kase = 1;
        } else {
          kase = 2;
          k = ks;
        }
      }
      k++;

      // Perform the task indicated by kase.

      switch (kase) {

          // Deflate negligible s(p).

        case 1:
          {
            double f = e[p - 2];
            e[p - 2] = 0.0;
            for (int j = p - 2; j >= k; j--) {
              double t = hypot(s[j], f);
              double cs = s[j] / t;
              double sn = f / t;
              s[j] = t;
              if (j != k) {
                f = -sn * e[j - 1];
                e[j - 1] = cs * e[j - 1];
              }
              if (wantv) {
                for (int i = 0; i < n; i++) {
                  t = cs * V[i][j] + sn * V[i][p - 1];
                  V[i][p - 1] = -sn * V[i][j] + cs * V[i][p - 1];
                  V[i][j] = t;
                }
              }
            }
          }
          break;

          // Split at negligible s(k).

        case 2:
          {
            double f = e[k - 1];
            e[k - 1] = 0.0;
            for (int j = k; j < p; j++) {
              double t = hypot(s[j], f);
              double cs = s[j] / t;
              double sn = f / t;
              s[j] = t;
              f = -sn * e[j];
              e[j] = cs * e[j];
              if (wantu) {
                for (int i = 0; i < m; i++) {
                  t = cs * U[i][j] + sn * U[i][k - 1];
                  U[i][k - 1] = -sn * U[i][j] + cs * U[i][k - 1];
                  U[i][j] = t;
                }
              }
            }
          }
          break;

          // Perform one qr step.

        case 3:
          {

            // Calculate the shift.

            double scale =
                Math.max(
                    Math.max(
                        Math.max(
                            Math.max(Math.abs(s[p - 1]), Math.abs(s[p - 2])), Math.abs(e[p - 2])),
                        Math.abs(s[k])),
                    Math.abs(e[k]));
            double sp = s[p - 1] / scale;
            double spm1 = s[p - 2] / scale;
            double epm1 = e[p - 2] / scale;
            double sk = s[k] / scale;
            double ek = e[k] / scale;
            double b = ((spm1 + sp) * (spm1 - sp) + epm1 * epm1) / 2.0;
            double c = (sp * epm1) * (sp * epm1);
            double shift = 0.0;
            if ((b != 0.0) | (c != 0.0)) {
              shift = Math.sqrt(b * b + c);
              if (b < 0.0) {
                shift = -shift;
              }
              shift = c / (b + shift);
            }
            double f = (sk + sp) * (sk - sp) + shift;
            double g = sk * ek;

            // Chase zeros.

            for (int j = k; j < p - 1; j++) {
              double t = hypot(f, g);
              double cs = f / t;
              double sn = g / t;
              if (j != k) {
                e[j - 1] = t;
              }
              f = cs * s[j] + sn * e[j];
              e[j] = cs * e[j] - sn * s[j];
              g = sn * s[j + 1];
              s[j + 1] = cs * s[j + 1];
              if (wantv) {
                for (int i = 0; i < n; i++) {
                  t = cs * V[i][j] + sn * V[i][j + 1];
                  V[i][j + 1] = -sn * V[i][j] + cs * V[i][j + 1];
                  V[i][j] = t;
                }
              }
              t = hypot(f, g);
              cs = f / t;
              sn = g / t;
              s[j] = t;
              f = cs * e[j] + sn * s[j + 1];
              s[j + 1] = -sn * e[j] + cs * s[j + 1];
              g = sn * e[j + 1];
              e[j + 1] = cs * e[j + 1];
              if (wantu && (j < m - 1)) {
                for (int i = 0; i < m; i++) {
                  t = cs * U[i][j] + sn * U[i][j + 1];
                  U[i][j + 1] = -sn * U[i][j] + cs * U[i][j + 1];
                  U[i][j] = t;
                }
              }
            }
            e[p - 2] = f;
            iter = iter + 1;
          }
          break;

          // Convergence.

        case 4:
          {

            // Make the singular values positive.

            if (s[k] <= 0.0) {
              s[k] = (s[k] < 0.0 ? -s[k] : 0.0);
              if (wantv) {
                for (int i = 0; i <= pp; i++) {
                  V[i][k] = -V[i][k];
                }
              }
            }

            // Order the singular values.

            while (k < pp) {
              if (s[k] >= s[k + 1]) {
                break;
              }
              double t = s[k];
              s[k] = s[k + 1];
              s[k + 1] = t;
              if (wantv && (k < n - 1)) {
                for (int i = 0; i < n; i++) {
                  t = V[i][k + 1];
                  V[i][k + 1] = V[i][k];
                  V[i][k] = t;
                }
              }
              if (wantu && (k < m - 1)) {
                for (int i = 0; i < m; i++) {
                  t = U[i][k + 1];
                  U[i][k + 1] = U[i][k];
                  U[i][k] = t;
                }
              }
              k++;
            }
            iter = 0;
            p--;
          }
          break;
      }
    }
  }
  /**
   * Downloads to a directory represented by a {@link File} object, determining the file name from
   * the Content-Disposition header.
   *
   * @param url URL of file
   * @param base base directory in which the download is saved
   * @return the absolute file path of the downloaded file, or an empty string if the file could not
   *     be downloaded
   */
  public String download(String url, File base) {
    if (mHTTPClient == null) {
      mHTTPClient = createHTTPClient(mPrivateKey, mCertificate, mValidateCertificate);
      if (mHTTPClient == null) return "";
    }

    LOGGER.info("downloading file from URL=" + url + "...");
    mCurrentRequest = new HttpGet(url);

    // execute request
    CloseableHttpResponse response;
    try {
      response = mHTTPClient.execute(mCurrentRequest);
    } catch (IOException ex) {
      LOGGER.log(Level.WARNING, "can't execute request", ex);
      return "";
    }

    try {
      int code = response.getStatusLine().getStatusCode();
      // HTTP/1.1 200 OK -- other codes should throw Exceptions
      if (code != 200) {
        LOGGER.warning("invalid response code: " + code);
        return "";
      }

      // get filename
      Header dispHeader = response.getFirstHeader("Content-Disposition");
      if (dispHeader == null) {
        LOGGER.warning("no content header");
        return "";
      }
      String filename = parseContentDisposition(dispHeader.getValue());
      // never trust incoming data
      filename = filename != null ? new File(filename).getName() : "";
      if (filename.isEmpty()) {
        LOGGER.warning("no filename in content: " + dispHeader.getValue());
        return "";
      }

      // get file size
      long s = -1;
      Header lengthHeader = response.getFirstHeader("Content-Length");
      if (lengthHeader == null) {
        LOGGER.warning("no length header");
      } else {
        try {
          s = Long.parseLong(lengthHeader.getValue());
        } catch (NumberFormatException ex) {
          LOGGER.log(Level.WARNING, "can' parse file size", ex);
        }
      }
      final long fileSize = s;
      mListener.updateProgress(s < 0 ? -2 : 0);

      // TODO should check for content-disposition parsing here
      // and choose another filename if necessary
      HttpEntity entity = response.getEntity();
      if (entity == null) {
        LOGGER.warning("no entity in response");
        return "";
      }

      File destination = new File(base, filename);
      if (destination.exists()) {
        LOGGER.warning("file already exists: " + destination.getAbsolutePath());
        return "";
      }
      try (FileOutputStream out = new FileOutputStream(destination)) {
        CountingOutputStream cOut =
            new CountingOutputStream(out) {
              @Override
              protected synchronized void afterWrite(int n) {
                if (fileSize <= 0) return;

                // inform listener
                mListener.updateProgress((int) (this.getByteCount() / (fileSize * 1.0) * 100));
              }
            };
        entity.writeTo(cOut);
      } catch (IOException ex) {
        LOGGER.log(Level.WARNING, "can't download file", ex);
        return "";
      }

      LOGGER.info("... download successful!");
      return destination.getAbsolutePath();
    } finally {
      try {
        response.close();
      } catch (IOException ex) {
        LOGGER.log(Level.WARNING, "can't close response", ex);
      }
    }
  }
 // TODO unused
 public void abort() {
   if (mCurrentRequest != null) mCurrentRequest.abort();
   mListener.updateProgress(-3);
 }