Exemplo n.º 1
0
  /**
   * Constructor that generates a sparse instance from the given instance. Reference to the dataset
   * is set to null. (ie. the instance doesn't have access to information about the attribute types)
   *
   * @param instance the instance from which the attribute values and the weight are to be copied
   */
  public SparseInstance(Instance instance) {

    m_Weight = instance.weight();
    m_Dataset = null;
    m_NumAttributes = instance.numAttributes();
    if (instance instanceof SparseInstance) {
      m_AttValues = ((SparseInstance) instance).m_AttValues;
      m_Indices = ((SparseInstance) instance).m_Indices;
    } else {
      double[] tempValues = new double[instance.numAttributes()];
      int[] tempIndices = new int[instance.numAttributes()];
      int vals = 0;
      for (int i = 0; i < instance.numAttributes(); i++) {
        if (instance.value(i) != 0) {
          tempValues[vals] = instance.value(i);
          tempIndices[vals] = i;
          vals++;
        }
      }
      m_AttValues = new double[vals];
      m_Indices = new int[vals];
      System.arraycopy(tempValues, 0, m_AttValues, 0, vals);
      System.arraycopy(tempIndices, 0, m_Indices, 0, vals);
    }
  }
Exemplo n.º 2
0
 /**
  * Private function to compute default number of accurate instances in the specified data for the
  * consequent of the rule
  *
  * @param data the data in question
  * @return the default accuracy number
  */
 private double computeDefAccu(Instances data) {
   double defAccu = 0;
   for (int i = 0; i < data.numInstances(); i++) {
     Instance inst = data.instance(i);
     if ((int) inst.classValue() == (int) m_Consequent) defAccu += inst.weight();
   }
   return defAccu;
 }
Exemplo n.º 3
0
  /**
   * Processes the given data (may change the provided dataset) and returns the modified version.
   * This method is called in batchFinished().
   *
   * @param instances the data to process
   * @return the modified data
   * @throws Exception in case the processing goes wrong
   * @see #batchFinished()
   */
  protected Instances process(Instances instances) throws Exception {
    Instances result;
    int i;
    int n;
    double[] values;
    String value;
    Instance inst;
    Instance newInst;

    // we need the complete input data!
    if (!isFirstBatchDone()) setOutputFormat(determineOutputFormat(getInputFormat()));

    result = new Instances(getOutputFormat());

    for (i = 0; i < instances.numInstances(); i++) {
      inst = instances.instance(i);
      values = inst.toDoubleArray();

      for (n = 0; n < values.length; n++) {
        if (!m_Cols.isInRange(n) || !instances.attribute(n).isNumeric() || inst.isMissing(n))
          continue;

        // get index of value
        if (instances.attribute(n).type() == Attribute.DATE) value = inst.stringValue(n);
        else value = Utils.doubleToString(inst.value(n), MAX_DECIMALS);

        values[n] = result.attribute(n).indexOfValue(value);
      }

      // generate new instance
      if (inst instanceof SparseInstance) newInst = new SparseInstance(inst.weight(), values);
      else newInst = new DenseInstance(inst.weight(), values);

      // copy possible string, relational values
      newInst.setDataset(getOutputFormat());
      copyValues(newInst, false, inst.dataset(), getOutputFormat());

      result.add(newInst);
    }

    return result;
  }
Exemplo n.º 4
0
  /**
   * Implements the splitData function. This procedure is to split the data into bags according to
   * the nominal attribute value The infoGain for each bag is also calculated.
   *
   * @param data the data to be split
   * @param defAcRt the default accuracy rate for data
   * @param cl the class label to be predicted
   * @return the array of data after split
   */
  public Instances[] splitData(Instances data, double defAcRt, double cl) {
    int bag = att.numValues();
    Instances[] splitData = new Instances[bag];

    for (int x = 0; x < bag; x++) {
      splitData[x] = new Instances(data, data.numInstances());
      accurate[x] = 0;
      coverage[x] = 0;
    }

    for (int x = 0; x < data.numInstances(); x++) {
      Instance inst = data.instance(x);
      if (!inst.isMissing(att)) {
        int v = (int) inst.value(att);
        splitData[v].add(inst);
        coverage[v] += inst.weight();
        if ((int) inst.classValue() == (int) cl) accurate[v] += inst.weight();
      }
    }

    for (int x = 0; x < bag; x++) {
      double t = coverage[x] + 1.0;
      double p = accurate[x] + 1.0;
      double infoGain =
          // Utils.eq(defAcRt, 1.0) ?
          // accurate[x]/(double)numConds :
          accurate[x] * (Utils.log2(p / t) - Utils.log2(defAcRt));

      if (infoGain > maxInfoGain) {
        maxInfoGain = infoGain;
        cover = coverage[x];
        accu = accurate[x];
        accuRate = p / t;
        value = (double) x;
      }
    }

    return splitData;
  }
Exemplo n.º 5
0
  /**
   * Inserts an instance into the hash table
   *
   * @param inst instance to be inserted
   * @param instA to create the hash key from
   * @throws Exception if the instance can't be inserted
   */
  private void insertIntoTable(Instance inst, double[] instA) throws Exception {

    double[] tempClassDist2;
    double[] newDist;
    DecisionTableHashKey thekey;

    if (instA != null) {
      thekey = new DecisionTableHashKey(instA);
    } else {
      thekey = new DecisionTableHashKey(inst, inst.numAttributes(), false);
    }

    // see if this one is already in the table
    tempClassDist2 = (double[]) m_entries.get(thekey);
    if (tempClassDist2 == null) {
      if (m_classIsNominal) {
        newDist = new double[m_theInstances.classAttribute().numValues()];

        // Leplace estimation
        for (int i = 0; i < m_theInstances.classAttribute().numValues(); i++) {
          newDist[i] = 1.0;
        }

        newDist[(int) inst.classValue()] = inst.weight();

        // add to the table
        m_entries.put(thekey, newDist);
      } else {
        newDist = new double[2];
        newDist[0] = inst.classValue() * inst.weight();
        newDist[1] = inst.weight();

        // add to the table
        m_entries.put(thekey, newDist);
      }
    } else {

      // update the distribution for this instance
      if (m_classIsNominal) {
        tempClassDist2[(int) inst.classValue()] += inst.weight();

        // update the table
        m_entries.put(thekey, tempClassDist2);
      } else {
        tempClassDist2[0] += (inst.classValue() * inst.weight());
        tempClassDist2[1] += inst.weight();

        // update the table
        m_entries.put(thekey, tempClassDist2);
      }
    }
  }
Exemplo n.º 6
0
  /**
   * Prune all the possible final sequences of the rule using the pruning data. The measure used to
   * prune the rule is based on flag given.
   *
   * @param pruneData the pruning data used to prune the rule
   * @param useWhole flag to indicate whether use the error rate of the whole pruning data instead
   *     of the data covered
   */
  public void prune(Instances pruneData, boolean useWhole) {
    Instances data = pruneData;

    double total = data.sumOfWeights();
    if (!Utils.gr(total, 0.0)) return;

    /* The default accurate # and rate on pruning data */
    double defAccu = computeDefAccu(data);

    if (m_Debug)
      System.err.println(
          "Pruning with " + defAccu + " positive data out of " + total + " instances");

    int size = m_Antds.size();
    if (size == 0) return; // Default rule before pruning

    double[] worthRt = new double[size];
    double[] coverage = new double[size];
    double[] worthValue = new double[size];
    for (int w = 0; w < size; w++) {
      worthRt[w] = coverage[w] = worthValue[w] = 0.0;
    }

    /* Calculate accuracy parameters for all the antecedents in this rule */
    double tn = 0.0; // True negative if useWhole
    for (int x = 0; x < size; x++) {
      Antd antd = (Antd) m_Antds.elementAt(x);
      Instances newData = data;
      data = new Instances(newData, 0); // Make data empty

      for (int y = 0; y < newData.numInstances(); y++) {
        Instance ins = newData.instance(y);

        if (antd.covers(ins) > 0) { // Covered by this antecedent
          coverage[x] += ins.weight();
          data.add(ins); // Add to data for further pruning
          if ((int) ins.classValue() == (int) m_Consequent) // Accurate prediction
          worthValue[x] += ins.weight();
        } else if (useWhole) { // Not covered
          if ((int) ins.classValue() != (int) m_Consequent) tn += ins.weight();
        }
      }

      if (useWhole) {
        worthValue[x] += tn;
        worthRt[x] = worthValue[x] / total;
      } else // Note if coverage is 0, accuracy is 0.5
      worthRt[x] = (worthValue[x] + 1.0) / (coverage[x] + 2.0);
    }

    double maxValue = (defAccu + 1.0) / (total + 2.0);
    int maxIndex = -1;
    for (int i = 0; i < worthValue.length; i++) {
      if (m_Debug) {
        double denom = useWhole ? total : coverage[i];
        System.err.println(
            i
                + "(useAccuray? "
                + !useWhole
                + "): "
                + worthRt[i]
                + "="
                + worthValue[i]
                + "/"
                + denom);
      }
      if (worthRt[i] > maxValue) { // Prefer to the
        maxValue = worthRt[i]; // shorter rule
        maxIndex = i;
      }
    }

    if (maxIndex == -1) return;

    /* Prune the antecedents according to the accuracy parameters */
    for (int z = size - 1; z > maxIndex; z--) m_Antds.removeElementAt(z);
  }
Exemplo n.º 7
0
  /**
   * Calculates the class membership probabilities for the given test instance.
   *
   * @param instance the instance to be classified
   * @return preedicted class probability distribution
   * @throws Exception if distribution can't be computed successfully
   */
  public double[] distributionForInstance(Instance instance) throws Exception {

    // default model?
    if (m_ZeroR != null) {
      return m_ZeroR.distributionForInstance(instance);
    }

    if (m_Train.numInstances() == 0) {
      throw new Exception("No training instances!");
    }

    m_NNSearch.addInstanceInfo(instance);

    int k = m_Train.numInstances();
    if ((!m_UseAllK && (m_kNN < k)) /*&&
       !(m_WeightKernel==INVERSE ||
         m_WeightKernel==GAUSS)*/) {
      k = m_kNN;
    }

    Instances neighbours = m_NNSearch.kNearestNeighbours(instance, k);
    double distances[] = m_NNSearch.getDistances();

    if (m_Debug) {
      System.out.println("Test Instance: " + instance);
      System.out.println(
          "For "
              + k
              + " kept "
              + neighbours.numInstances()
              + " out of "
              + m_Train.numInstances()
              + " instances.");
    }

    // IF LinearNN has skipped so much that <k neighbours are remaining.
    if (k > distances.length) k = distances.length;

    if (m_Debug) {
      System.out.println("Instance Distances");
      for (int i = 0; i < distances.length; i++) {
        System.out.println("" + distances[i]);
      }
    }

    // Determine the bandwidth
    double bandwidth = distances[k - 1];

    // Check for bandwidth zero
    if (bandwidth <= 0) {
      // if the kth distance is zero than give all instances the same weight
      for (int i = 0; i < distances.length; i++) distances[i] = 1;
    } else {
      // Rescale the distances by the bandwidth
      for (int i = 0; i < distances.length; i++) distances[i] = distances[i] / bandwidth;
    }

    // Pass the distances through a weighting kernel
    for (int i = 0; i < distances.length; i++) {
      switch (m_WeightKernel) {
        case LINEAR:
          distances[i] = 1.0001 - distances[i];
          break;
        case EPANECHNIKOV:
          distances[i] = 3 / 4D * (1.0001 - distances[i] * distances[i]);
          break;
        case TRICUBE:
          distances[i] = Math.pow((1.0001 - Math.pow(distances[i], 3)), 3);
          break;
        case CONSTANT:
          // System.err.println("using constant kernel");
          distances[i] = 1;
          break;
        case INVERSE:
          distances[i] = 1.0 / (1.0 + distances[i]);
          break;
        case GAUSS:
          distances[i] = Math.exp(-distances[i] * distances[i]);
          break;
      }
    }

    if (m_Debug) {
      System.out.println("Instance Weights");
      for (int i = 0; i < distances.length; i++) {
        System.out.println("" + distances[i]);
      }
    }

    // Set the weights on the training data
    double sumOfWeights = 0, newSumOfWeights = 0;
    for (int i = 0; i < distances.length; i++) {
      double weight = distances[i];
      Instance inst = (Instance) neighbours.instance(i);
      sumOfWeights += inst.weight();
      newSumOfWeights += inst.weight() * weight;
      inst.setWeight(inst.weight() * weight);
      // weightedTrain.add(newInst);
    }

    // Rescale weights
    for (int i = 0; i < neighbours.numInstances(); i++) {
      Instance inst = neighbours.instance(i);
      inst.setWeight(inst.weight() * sumOfWeights / newSumOfWeights);
    }

    // Create a weighted classifier
    m_Classifier.buildClassifier(neighbours);

    if (m_Debug) {
      System.out.println("Classifying test instance: " + instance);
      System.out.println("Built base classifier:\n" + m_Classifier.toString());
    }

    // Return the classifier's predictions
    return m_Classifier.distributionForInstance(instance);
  }
  public void buildClassifier(Instances insts) throws Exception {

    // Compute mean of target value
    double yMean = insts.meanOrMode(insts.classIndex());

    // Choose best attribute
    double minMsq = Double.MAX_VALUE;
    m_attribute = null;
    int chosen = -1;
    double chosenSlope = Double.NaN;
    double chosenIntercept = Double.NaN;
    for (int i = 0; i < insts.numAttributes(); i++) {
      if (i != insts.classIndex()) {
        if (!insts.attribute(i).isNumeric()) {
          throw new Exception("UnivariateLinearRegression: Only numeric attributes!");
        }
        m_attribute = insts.attribute(i);

        // Compute slope and intercept
        double xMean = insts.meanOrMode(i);
        double sumWeightedXDiffSquared = 0;
        double sumWeightedYDiffSquared = 0;
        m_slope = 0;
        for (int j = 0; j < insts.numInstances(); j++) {
          Instance inst = insts.instance(j);
          if (!inst.isMissing(i) && !inst.classIsMissing()) {
            double xDiff = inst.value(i) - xMean;
            double yDiff = inst.classValue() - yMean;
            double weightedXDiff = inst.weight() * xDiff;
            double weightedYDiff = inst.weight() * yDiff;
            m_slope += weightedXDiff * yDiff;
            sumWeightedXDiffSquared += weightedXDiff * xDiff;
            sumWeightedYDiffSquared += weightedYDiff * yDiff;
          }
        }

        // Skip attribute if not useful
        if (sumWeightedXDiffSquared == 0) {
          continue;
        }
        double numerator = m_slope;
        m_slope /= sumWeightedXDiffSquared;
        m_intercept = yMean - m_slope * xMean;

        // Compute sum of squared errors
        double msq = sumWeightedYDiffSquared - m_slope * numerator;

        // Check whether this is the best attribute
        if (msq < minMsq) {
          minMsq = msq;
          chosen = i;
          chosenSlope = m_slope;
          chosenIntercept = m_intercept;
        }
      }
    }

    // Set parameters
    if (chosen == -1) {

      System.err.println("----- no useful attribute found");
      m_attribute = null;
      m_slope = 0;
      m_intercept = yMean;
    } else {
      m_attribute = insts.attribute(chosen);
      m_slope = chosenSlope;
      m_intercept = chosenIntercept;
    }
  }
Exemplo n.º 9
0
  /**
   * Calculates the accuracy on a test fold for internal cross validation of feature sets
   *
   * @param fold set of instances to be "left out" and classified
   * @param fs currently selected feature set
   * @return the accuracy for the fold
   * @throws Exception if something goes wrong
   */
  double evaluateFoldCV(Instances fold, int[] fs) throws Exception {

    int i;
    int ruleCount = 0;
    int numFold = fold.numInstances();
    int numCl = m_theInstances.classAttribute().numValues();
    double[][] class_distribs = new double[numFold][numCl];
    double[] instA = new double[fs.length];
    double[] normDist;
    DecisionTableHashKey thekey;
    double acc = 0.0;
    int classI = m_theInstances.classIndex();
    Instance inst;

    if (m_classIsNominal) {
      normDist = new double[numCl];
    } else {
      normDist = new double[2];
    }

    // first *remove* instances
    for (i = 0; i < numFold; i++) {
      inst = fold.instance(i);
      for (int j = 0; j < fs.length; j++) {
        if (fs[j] == classI) {
          instA[j] = Double.MAX_VALUE; // missing for the class
        } else if (inst.isMissing(fs[j])) {
          instA[j] = Double.MAX_VALUE;
        } else {
          instA[j] = inst.value(fs[j]);
        }
      }
      thekey = new DecisionTableHashKey(instA);
      if ((class_distribs[i] = (double[]) m_entries.get(thekey)) == null) {
        throw new Error("This should never happen!");
      } else {
        if (m_classIsNominal) {
          class_distribs[i][(int) inst.classValue()] -= inst.weight();
        } else {
          class_distribs[i][0] -= (inst.classValue() * inst.weight());
          class_distribs[i][1] -= inst.weight();
        }
        ruleCount++;
      }
      m_classPriorCounts[(int) inst.classValue()] -= inst.weight();
    }
    double[] classPriors = m_classPriorCounts.clone();
    Utils.normalize(classPriors);

    // now classify instances
    for (i = 0; i < numFold; i++) {
      inst = fold.instance(i);
      System.arraycopy(class_distribs[i], 0, normDist, 0, normDist.length);
      if (m_classIsNominal) {
        boolean ok = false;
        for (int j = 0; j < normDist.length; j++) {
          if (Utils.gr(normDist[j], 1.0)) {
            ok = true;
            break;
          }
        }

        if (!ok) { // majority class
          normDist = classPriors.clone();
        }

        //	if (ok) {
        Utils.normalize(normDist);
        if (m_evaluationMeasure == EVAL_AUC) {
          m_evaluation.evaluateModelOnceAndRecordPrediction(normDist, inst);
        } else {
          m_evaluation.evaluateModelOnce(normDist, inst);
        }
        /*	} else {
          normDist[(int)m_majority] = 1.0;
          if (m_evaluationMeasure == EVAL_AUC) {
            m_evaluation.evaluateModelOnceAndRecordPrediction(normDist, inst);
          } else {
            m_evaluation.evaluateModelOnce(normDist, inst);
          }
        } */
      } else {
        if (Utils.eq(normDist[1], 0.0)) {
          double[] temp = new double[1];
          temp[0] = m_majority;
          m_evaluation.evaluateModelOnce(temp, inst);
        } else {
          double[] temp = new double[1];
          temp[0] = normDist[0] / normDist[1];
          m_evaluation.evaluateModelOnce(temp, inst);
        }
      }
    }

    // now re-insert instances
    for (i = 0; i < numFold; i++) {
      inst = fold.instance(i);

      m_classPriorCounts[(int) inst.classValue()] += inst.weight();

      if (m_classIsNominal) {
        class_distribs[i][(int) inst.classValue()] += inst.weight();
      } else {
        class_distribs[i][0] += (inst.classValue() * inst.weight());
        class_distribs[i][1] += inst.weight();
      }
    }
    return acc;
  }
Exemplo n.º 10
0
  /**
   * Classifies an instance for internal leave one out cross validation of feature sets
   *
   * @param instance instance to be "left out" and classified
   * @param instA feature values of the selected features for the instance
   * @return the classification of the instance
   * @throws Exception if something goes wrong
   */
  double evaluateInstanceLeaveOneOut(Instance instance, double[] instA) throws Exception {

    DecisionTableHashKey thekey;
    double[] tempDist;
    double[] normDist;

    thekey = new DecisionTableHashKey(instA);
    if (m_classIsNominal) {

      // if this one is not in the table
      if ((tempDist = (double[]) m_entries.get(thekey)) == null) {
        throw new Error("This should never happen!");
      } else {
        normDist = new double[tempDist.length];
        System.arraycopy(tempDist, 0, normDist, 0, tempDist.length);
        normDist[(int) instance.classValue()] -= instance.weight();

        // update the table
        // first check to see if the class counts are all zero now
        boolean ok = false;
        for (int i = 0; i < normDist.length; i++) {
          if (Utils.gr(normDist[i], 1.0)) {
            ok = true;
            break;
          }
        }

        //	downdate the class prior counts
        m_classPriorCounts[(int) instance.classValue()] -= instance.weight();
        double[] classPriors = m_classPriorCounts.clone();
        Utils.normalize(classPriors);
        if (!ok) { // majority class
          normDist = classPriors;
        }

        m_classPriorCounts[(int) instance.classValue()] += instance.weight();

        // if (ok) {
        Utils.normalize(normDist);
        if (m_evaluationMeasure == EVAL_AUC) {
          m_evaluation.evaluateModelOnceAndRecordPrediction(normDist, instance);
        } else {
          m_evaluation.evaluateModelOnce(normDist, instance);
        }
        return Utils.maxIndex(normDist);
        /*} else {
          normDist = new double [normDist.length];
          normDist[(int)m_majority] = 1.0;
          if (m_evaluationMeasure == EVAL_AUC) {
            m_evaluation.evaluateModelOnceAndRecordPrediction(normDist, instance);
          } else {
            m_evaluation.evaluateModelOnce(normDist, instance);
          }
          return m_majority;
        } */
      }
      //      return Utils.maxIndex(tempDist);
    } else {

      // see if this one is already in the table
      if ((tempDist = (double[]) m_entries.get(thekey)) != null) {
        normDist = new double[tempDist.length];
        System.arraycopy(tempDist, 0, normDist, 0, tempDist.length);
        normDist[0] -= (instance.classValue() * instance.weight());
        normDist[1] -= instance.weight();
        if (Utils.eq(normDist[1], 0.0)) {
          double[] temp = new double[1];
          temp[0] = m_majority;
          m_evaluation.evaluateModelOnce(temp, instance);
          return m_majority;
        } else {
          double[] temp = new double[1];
          temp[0] = normDist[0] / normDist[1];
          m_evaluation.evaluateModelOnce(temp, instance);
          return temp[0];
        }
      } else {
        throw new Error("This should never happen!");
      }
    }

    // shouldn't get here
    // return 0.0;
  }
Exemplo n.º 11
0
  /**
   * Generates the classifier.
   *
   * @param data set of instances serving as training data
   * @throws Exception if the classifier has not been generated successfully
   */
  public void buildClassifier(Instances data) throws Exception {

    // can classifier handle the data?
    getCapabilities().testWithFail(data);

    // remove instances with missing class
    m_theInstances = new Instances(data);
    m_theInstances.deleteWithMissingClass();

    m_rr = new Random(1);

    if (m_theInstances.classAttribute().isNominal()) { // 	 Set up class priors
      m_classPriorCounts = new double[data.classAttribute().numValues()];
      Arrays.fill(m_classPriorCounts, 1.0);
      for (int i = 0; i < data.numInstances(); i++) {
        Instance curr = data.instance(i);
        m_classPriorCounts[(int) curr.classValue()] += curr.weight();
      }
      m_classPriors = m_classPriorCounts.clone();
      Utils.normalize(m_classPriors);
    }

    setUpEvaluator();

    if (m_theInstances.classAttribute().isNumeric()) {
      m_disTransform = new weka.filters.unsupervised.attribute.Discretize();
      m_classIsNominal = false;

      // use binned discretisation if the class is numeric
      ((weka.filters.unsupervised.attribute.Discretize) m_disTransform).setBins(10);
      ((weka.filters.unsupervised.attribute.Discretize) m_disTransform).setInvertSelection(true);

      // Discretize all attributes EXCEPT the class
      String rangeList = "";
      rangeList += (m_theInstances.classIndex() + 1);
      // System.out.println("The class col: "+m_theInstances.classIndex());

      ((weka.filters.unsupervised.attribute.Discretize) m_disTransform)
          .setAttributeIndices(rangeList);
    } else {
      m_disTransform = new weka.filters.supervised.attribute.Discretize();
      ((weka.filters.supervised.attribute.Discretize) m_disTransform).setUseBetterEncoding(true);
      m_classIsNominal = true;
    }

    m_disTransform.setInputFormat(m_theInstances);
    m_theInstances = Filter.useFilter(m_theInstances, m_disTransform);

    m_numAttributes = m_theInstances.numAttributes();
    m_numInstances = m_theInstances.numInstances();
    m_majority = m_theInstances.meanOrMode(m_theInstances.classAttribute());

    // Perform the search
    int[] selected = m_search.search(m_evaluator, m_theInstances);

    m_decisionFeatures = new int[selected.length + 1];
    System.arraycopy(selected, 0, m_decisionFeatures, 0, selected.length);
    m_decisionFeatures[m_decisionFeatures.length - 1] = m_theInstances.classIndex();

    // reduce instances to selected features
    m_delTransform = new Remove();
    m_delTransform.setInvertSelection(true);

    // set features to keep
    m_delTransform.setAttributeIndicesArray(m_decisionFeatures);
    m_delTransform.setInputFormat(m_theInstances);
    m_dtInstances = Filter.useFilter(m_theInstances, m_delTransform);

    // reset the number of attributes
    m_numAttributes = m_dtInstances.numAttributes();

    // create hash table
    m_entries = new Hashtable((int) (m_dtInstances.numInstances() * 1.5));

    // insert instances into the hash table
    for (int i = 0; i < m_numInstances; i++) {
      Instance inst = m_dtInstances.instance(i);
      insertIntoTable(inst, null);
    }

    // Replace the global table majority with nearest neighbour?
    if (m_useIBk) {
      m_ibk = new IBk();
      m_ibk.buildClassifier(m_theInstances);
    }

    // Save memory
    if (m_saveMemory) {
      m_theInstances = new Instances(m_theInstances, 0);
      m_dtInstances = new Instances(m_dtInstances, 0);
    }
    m_evaluation = null;
  }