Exemplo n.º 1
0
 /*---- Assumes both HugeIntegers are positive and this > that -----------------*/
 public HugeInteger subtract(HugeInteger that) {
   if (this.compareTo(that) < 0) return that.subtract(this);
   HugeInteger result = new HugeInteger(this.size());
   int borrow = 0;
   int difference;
   int position = 0;
   for (; position < that.size(); position++) {
     difference = this.digitAt(position) - that.digitAt(position) - borrow;
     if (difference < 0) {
       difference += 10;
       borrow = 1;
     } else {
       borrow = 0;
     }
     result.addDigit(difference);
     DIGIT_OPERATIONS++;
   }
   for (; position < this.size(); position++) {
     difference = this.digitAt(position) - borrow;
     if (difference < 0) {
       difference += 10;
       borrow = 1;
     } else {
       borrow = 0;
     }
     result.addDigit(difference);
     DIGIT_OPERATIONS++;
   }
   result.removeLeadingZeroes();
   return result;
 }
Exemplo n.º 2
0
  /*---- returns the sum of this and the provided HugeInteger -------------------*/
  public HugeInteger add(HugeInteger that) {
    this.removeLeadingZeroes();
    that.removeLeadingZeroes();

    HugeInteger result = new HugeInteger(max(this.size(), that.size()));

    int carry = 0;
    int position = 0;
    int sum;
    while (position < min(this.size(), that.size())) {
      sum = this.digitAt(position) + that.digitAt(position) + carry;
      if (sum >= 10) {
        sum -= 10;
        carry = 1;
      } else {
        carry = 0;
      }
      result.addDigit(sum);
      position++;
      DIGIT_OPERATIONS++;
    }
    if (this.size() > that.size()) {
      while (position < this.size()) {
        result.addDigit(this.digitAt(position) + carry);
        carry = 0;
        position++;
        DIGIT_OPERATIONS++;
      }

    } else if (that.size() > this.size()) {
      while (position < that.size()) {
        result.addDigit(that.digitAt(position) + carry);
        carry = 0;
        position++;
        DIGIT_OPERATIONS++;
      }
    }
    if (carry == 1) {
      result.addDigit(1);
    }

    return result;
  }
Exemplo n.º 3
0
  /*---- multiplies this and the specified HugeInteger using "school" algorithm -*/
  public HugeInteger multiply(HugeInteger that) {
    // create zero-filled HugeInteger
    int resultSize = this.size() + that.size();
    ArrayList<Integer> list = new ArrayList<Integer>(Collections.nCopies(resultSize, 0));
    HugeInteger result = new HugeInteger(list);

    int carry = 0;
    int m;
    for (int i = 0; i < that.size(); i++) {
      for (int j = 0; j < this.size(); j++) {
        m = this.digitAt(j) * that.digitAt(i);
        m = m + carry + result.digitAt(i + j);
        result.setDigit(i + j, m % 10);
        carry = m / 10;
        DIGIT_OPERATIONS += 3; // three digit operations: two add, one multiply
      }
      if (carry > 0) {
        result.setDigit(i + this.size(), result.digitAt(i + this.size()) + carry);
        carry = 0;
      }
    }
    result.removeLeadingZeroes();
    return result;
  }
Exemplo n.º 4
0
 /*---- compares this HugeInteger to provided HugeInteger for order ------------*/
 public int compareTo(HugeInteger that) {
   if (this == that) return 0;
   else if (this.size() > that.size()) {
     return 1;
   } else if (this.size() < that.size()) {
     return -1;
   } else {
     for (int i = this.size() - 1; i >= 0; i--) {
       int thisDigit = this.digitAt(i);
       int thatDigit = that.digitAt(i);
       DIGIT_OPERATIONS++;
       if (thisDigit > thatDigit) return 1;
       else if (thisDigit < thatDigit) return -1;
     }
     return 0;
   }
 }