// calc axes protected final void compute() { // only parabola has directrix if (c.type == GeoConic.CONIC_PARABOLA) { // directrix has direction of second eigenvector // through point (b - p/2* eigenvec1) directrix.x = -eigenvec[1].y; directrix.y = eigenvec[1].x; double px = b.x - c.p / 2.0 * eigenvec[0].x; double py = b.y - c.p / 2.0 * eigenvec[0].y; directrix.z = -(directrix.x * px + directrix.y * py); P.setCoords(px, py, 1.0); } else directrix.setUndefined(); }
// compute circle through A, B, C protected void compute() { // A, B or C undefined if (!getA().isFinite() || !getB().isFinite() || !getC().isFinite()) { circle.setUndefined(); return; } // get inhomogenous coords of points ax = ((GeoPoint) getA()).inhomX; ay = ((GeoPoint) getA()).inhomY; bx = ((GeoPoint) getB()).inhomX; by = ((GeoPoint) getB()).inhomY; cx = ((GeoPoint) getC()).inhomX; cy = ((GeoPoint) getC()).inhomY; // A = B = C if (kernel.isEqual(ax, bx) && kernel.isEqual(ax, cx) && kernel.isEqual(ay, by) && kernel.isEqual(ay, cy)) { circle.setCircle((GeoPoint) getA(), 0.0); // single point return; } // calc vectors AB, AC, BC ABx = bx - ax; ABy = by - ay; ACx = cx - ax; ACy = cy - ay; BCx = cx - bx; BCy = cy - by; double lengthAB = GeoVec2D.length(ABx, ABy); double lengthAC = GeoVec2D.length(ACx, ACy); double lengthBC = GeoVec2D.length(BCx, BCy); // find the two bisectors with max intersection angle // i.e. maximum abs of determinant of directions // max( abs(det(AB, AC)), abs(det(AC, BC)), abs(det(AB, BC)) ) det[0] = Math.abs(ABx * ACy - ABy * ACx) / (lengthAB * lengthAC); // AB, AC det[1] = Math.abs(ACx * BCy - ACy * BCx) / (lengthAC * lengthBC); // AC, BC det[2] = Math.abs(ABx * BCy - ABy * BCx) / (lengthAB * lengthBC); // AB, BC // take ip[0] as init minimum and find minimum case maxDet = det[0]; casenr = 0; if (det[1] > maxDet) { casenr = 1; maxDet = det[1]; } if (det[2] > maxDet) { casenr = 2; maxDet = det[2]; } // A, B, C are collinear: set M to infinite point // in perpendicular direction of AB if (kernel.isZero(maxDet)) { center.setCoords(-ABy, ABx, 0.0d); circle.setCircle(center, (GeoPoint) getA()); } // standard case else { // intersect two line bisectors according to casenr switch (casenr) { case 0: // bisectors of AB, AC s0.x = ABx; s0.y = ABy; s0.z = -((ax + bx) * s0.x + (ay + by) * s0.y) / 2.0; s1.x = ACx; s1.y = ACy; s1.z = -((ax + cx) * s1.x + (ay + cy) * s1.y) / 2.0; break; case 1: // bisectors of AC, BC s1.x = ACx; s1.y = ACy; s1.z = -((ax + cx) * s1.x + (ay + cy) * s1.y) / 2.0; s0.x = BCx; s0.y = BCy; s0.z = -((bx + cx) * s0.x + (by + cy) * s0.y) / 2.0; break; case 2: // bisectors of AB, BC s0.x = ABx; s0.y = ABy; s0.z = -((ax + bx) * s0.x + (ay + by) * s0.y) / 2.0; s1.x = BCx; s1.y = BCy; s1.z = -((bx + cx) * s1.x + (by + cy) * s1.y) / 2.0; break; } // intersect line bisectors to get midpoint GeoVec3D.cross(s0, s1, center); circle.setCircle(center, center.distance(getA())); } }