Exemplo n.º 1
0
  // check that algorithm computes either the topological order or finds a directed cycle
  private void dfs(EdgeWeightedDigraph G, int v) {
    onStack[v] = true;
    marked[v] = true;
    for (DirectedEdge e : G.adj(v)) {
      int w = e.to();

      // short circuit if directed cycle found
      if (cycle != null) return;

      // found new vertex, so recur
      else if (!marked[w]) {
        edgeTo[w] = e;
        dfs(G, w);
      }

      // trace back directed cycle
      else if (onStack[w]) {
        cycle = new Stack<DirectedEdge>();
        while (e.from() != w) {
          cycle.push(e);
          e = edgeTo[e.from()];
        }
        cycle.push(e);
      }
    }

    onStack[v] = false;
  }
Exemplo n.º 2
0
	public void relax(EdgeWeightedDigraph G , int v){//vertex relaxation
		for(DirectedEdge e: G.adj(v)){//没有遍历树,只是遍历了从v指向的所有边(edges)
			int w = e.to();
			if(distTo[w]>distTo[v]+e.weight){
				distTo[w]=distTo[v]+e.weight;
				edgeTo[w]=e;
			}
		}
	}
Exemplo n.º 3
0
 private void relax(EdgeWeightedDigraph G, int v) {
   for (DirectedEdge edge : G.adj(v)) {
     int w = edge.to();
     if (distTo[w] < distTo[v] + edge.weight()) {
       distTo[w] = distTo[v] + edge.weight();
       edgeTo[w] = edge;
     }
   }
 }
Exemplo n.º 4
0
 /**
  * Método recursivo usado para la obtención de todos los caminos posibles dentro de un árbol. Si
  * un nodo tiene un outdegree igual a 0, es una hoja, y el camino ha terminado. De lo contrario,
  * debe continuar buscando caminos entre los nodos adyacentes al primer nodo mencionado.
  *
  * @param G Grafo dirigido y con pesos sobre el cual se están buscando caminos.
  * @param node Nodo que se está visitando actualmente.
  * @param weight Peso actual del camino.
  * @param path Representaoión como String del camino que se ha seguido hasta el nodo actual.
  */
 private void getPaths(EdgeWeightedDigraph G, Integer node, double weight, String path) {
   if (G.outdegree(node) == 0) this.paths.put(weight, path);
   else
     for (DirectedEdge edge : G.adj(node))
       this.getPaths(
           G,
           edge.to(),
           weight + edge.weight(),
           path + "| " + edge.from() + " -> " + edge.to() + " | ");
 }
Exemplo n.º 5
0
	private void relax(EdgeWeightedDigraph G ,int v){
		for(DirectedEdge e:G.adj(V)){
			int w = e.to();
			if(distTo[w]>distTo[v]+e.weight()){
				distTo[w] = distTo[v]+e.weight();
				edgeTo[w] = e;
				if(pq.contains(w)) pq.change(w,distTo[w]);
				else pq.insert(w,distTo[w]);
			}
		}
	}
Exemplo n.º 6
0
  public AcyclicLP(EdgeWeightedDigraph G, int s) {
    distTo = new double[G.V()];
    edgeTo = new DirectedEdge[G.V()];
    for (int v = 0; v < G.V(); v++) distTo[v] = Double.NEGATIVE_INFINITY;
    distTo[s] = 0.0;

    // relax vertices in toplogical order
    Topological topological = new Topological(G);
    for (int v : topological.order()) {
      for (DirectedEdge e : G.adj(v)) relax(e);
    }
  }
Exemplo n.º 7
0
 // run DFS in edge-weighted digraph G from vertex v and compute preorder/postorder
 private void dfs(EdgeWeightedDigraph G, int v) {
   marked[v] = true;
   pre[v] = preCounter++;
   preorder.enqueue(v);
   for (DirectedEdge e : G.adj(v)) {
     int w = e.to();
     if (!marked[w]) {
       dfs(G, w);
     }
   }
   postorder.enqueue(v);
   post[v] = postCounter++;
 }
Exemplo n.º 8
0
	private void relax(EdgeWeightedDigraph G ,int v){
		for(DirectedEdge e:G.adj(v)){
			int w = e.to();
			if(distTo[w]>distTo[v]+e.weight()){
				distTo[w] = distTo[v]+e.weight();
				edgeTo[w] = e;
				if(!onQ[w]){
					q.enqueue(w);
					onQ[w] = true;
				}
			}
			if(cost++ %G.V() == 0 ) findNegativeCycle();
		}
	}