예제 #1
0
  public void calAutoCorrelation_RingMean(
      int
          nRefType) { // crosscorrelation coefficients between pixel valuse and the means and
                      // medians of the pixels located on the cocentric rings with radius up to
                      // m_nRMax
    m_nRefType = nRefType;
    int numRings = m_cvRings.size();
    calRefPixels();
    int r, c;
    int len = m_cIMSC.m_nTotalSteps + 1;
    double[] pixels0 = new double[len];
    double[] meanr = new double[len];
    double[] medianr = new double[len];

    int index = 0;

    Point p;
    index = 0;
    while (true) {
      p = m_cIMSC.getPosition();
      pixels0[index] = m_pnPixelsLR[p.y][p.x];
      index++;
      if (m_cIMSC.done()) break;
      m_cIMSC.move();
    }

    ImageShape shape;
    Histogram hist = CommonMethods.getDefaultHistogram(m_pnPixelsLR);

    int y, y0 = 0;
    int nRef;
    for (c = 0; c < numRings - 1; c++) {
      index = 0;
      m_cIMSC.reset();
      y0 = m_cIMSC.getPosition().y;
      shape = m_cvRings.get(c);
      while (true) {
        p = m_cIMSC.getPosition();
        nRef = getRefPixel(p);
        y = p.y;
        if (y > y0) {
          IJ.showStatus(
              "calAutoCorrelation_RingMean: r="
                  + PrintAssist.ToString(c + 1)
                  + "   y="
                  + PrintAssist.ToString(y));
          y0 = y;
        }
        CommonMethods.fillHistogram(m_pnPixels, nRef, shape, p, hist);
        meanr[index] = hist.getMean();
        medianr[index] = hist.getPercentileValue();
        index++;
        if (m_cIMSC.done()) break;
        m_cIMSC.move();
      }
      m_pdAutoCorr_mean[c] = CommonStatisticsMethods.crossCorrelationCoefficient(pixels0, meanr, 0);
      m_pdAutoCorr_median[c] =
          CommonStatisticsMethods.crossCorrelationCoefficient(pixels0, medianr, 0);
    }
  }
예제 #2
0
 void calRefPixels() {
   int[] nRange = new int[2];
   CommonMethods.getDataRange(m_pnPixels, nRange);
   MeanSem0 ms = CommonStatisticsMethods.buildMeanSem(m_pnPixels);
   int nMin;
   switch (m_nRefType) {
     case export_AutoCorrelation.originalRef:
       m_pnPixelsLR = new int[h][w];
       CommonStatisticsMethods.copyArray(m_pnPixels, m_pnPixelsLR);
       break;
     case export_AutoCorrelation.globalMeanRef:
       m_pnPixelsLR = new int[h][w];
       CommonStatisticsMethods.copyArray(m_pnPixels, m_pnPixelsLR);
       CommonStatisticsMethods.shiftArray(m_pnPixelsLR, -(int) (ms.mean + 0.5));
       break;
     case export_AutoCorrelation.globalMedianRef:
       m_pnPixelsLR = new int[h][w];
       CommonStatisticsMethods.copyArray(m_pnPixels, m_pnPixelsLR);
       CommonStatisticsMethods.shiftArray(
           m_pnPixelsLR, -CommonStatisticsMethods.getQuantile(m_pnPixels, 0.5));
       break;
     case export_AutoCorrelation.localMeanRef:
       m_pnPixelsLR = CommonMethods.getPixelValus_LocalReference(impl, m_cRefRing, m_nRefType);
       break;
     case export_AutoCorrelation.localMedianRef:
       m_pnPixelsLR = CommonMethods.getPixelValus_LocalReference(impl, m_cRefRing, m_nRefType);
       break;
     default:
       m_pnPixelsLR = new int[h][w];
       CommonStatisticsMethods.copyArray(m_pnPixels, m_pnPixelsLR);
       break;
   }
   updateHistograms();
 }
예제 #3
0
 int calCompensatedPixels() {
   int numRings = m_cvRings.size();
   CommonStatisticsMethods.copyArray(m_pnPixels, m_pnPixelsCompensated);
   CommonMethods.displayPixels(m_pnPixelsCompensated, "before compensation", impl.getType());
   m_cIMSC.reset();
   Point pt;
   int index, step = 0, pixel, i, r0;
   double dm, dsur;
   ImageShape shape;
   while (true) {
     pt = m_cIMSC.getPosition();
     index = getPercentileIndex(step);
     dsur = m_pcRingMeanSems_Mean[index][m_nRMax].mean;
     r0 = m_pnAveRadius[index];
     //
     // m_pnPixelsCompensated[pt.y][pt.x]-=(int)(m_cPixelMeanSems_trail[index].mean-dsur);
     for (i = 0; i < numRings; i++) {
       pixel = (int) (m_pcRingMeanSems_Mean[index][i].mean - dsur);
       if (pixel < 1) break;
       shape = m_cvRings.get(i);
       shape.setCenter(pt);
       ImageShapeHandler.addValue(m_pnPixelsCompensated, shape, -pixel);
     }
     if (m_cIMSC.done()) break;
     m_cIMSC.move();
     step++;
   }
   CommonMethods.displayPixels(m_pnPixelsCompensated, "after compensation", impl.getType());
   return 1;
 }
 public void buildIPOGContourShapes(int[][] pixelsCompensated, int[][] pnScratch, int cutoff) {
   int h = pixelsCompensated.length, w = pixelsCompensated[0].length;
   intRange xRange3 = new intRange(), yRange3 = new intRange();
   IPOGaussianNodeHandler.getRanges3(IPOGNode.IPOGs, xRange, yRange);
   xRange.setCommonRange(new intRange(0, w - 1));
   yRange.setCommonRange(new intRange(0, h - 1));
   CommonStatisticsMethods.copyArray(
       pixelsCompensated,
       pnScratch,
       yRange.getMin(),
       yRange.getMax(),
       xRange.getMin(),
       xRange.getMax());
   IPOGaussianNodeHandler.getSuperImposition(pnScratch, IPOGNode.IPOGs);
   if (pnScratch[cy][cx] < cutoff) {
     cContourShape = new CircleImage(3);
     cContourShape.setCenter(new Point(cx, cy));
     cContourShape.setFrameRanges(new intRange(0, w - 1), new intRange(0, h - 1));
   } else {
     ArrayList<Point> contour =
         ContourFollower.getContour_Out(
             pnScratch, w, h, new Point(cx, cy), cutoff, Integer.MAX_VALUE, true);
     cContourShape = ImageShapeHandler.buildImageShape(contour);
   }
 }
예제 #5
0
 public IntPair getDataPosition(int ranking0) { // ascending, ranking starts from 0
   if (ranking0 >= m_nSize) {
     IJ.error("ranking is larger than the data size: in getDataPosition");
     return null;
   }
   IntPair ip = null;
   int r, c, num = m_dvDataLo.size(), nt;
   ArrayList<Double> dvt;
   dvt = m_dvDataLo;
   nt = dvt.size();
   num = nt;
   r = -1;
   while (num <= ranking0) {
     r++;
     if (r < m_nDim) dvt = m_pdvData[r];
     else dvt = m_dvDataHi;
     nt = dvt.size();
     num += nt;
   }
   if (r >= m_nDim) r = -2;
   int ranking = ranking0 - (num - nt);
   c = CommonStatisticsMethods.getRankingIndex(dvt, ranking, 1);
   ip = new IntPair(r, c);
   return ip;
 }
예제 #6
0
 void calAveRadius() {
   int len = m_pcRingMeanSems_Mean.length;
   double sd = CommonStatisticsMethods.buildMeanSem(m_pnPixels).getSD();
   int i, j, numRings = m_cvRings.size();
   for (i = 0; i < len; i++) {
     for (j = 0; j < numRings; j++) {
       if (m_pcRingMeanSems_Mean[i][j].mean < 2 * m_pcRingMeanSems_Mean[i][j].getSD()) break;
       m_pnAveRadius[i] = j;
     }
   }
 }
예제 #7
0
  int refinePixelStatitics() {
    stampIPOs();
    int[][] pixelsTemp = m_pnPixels;
    m_pnPixels = m_pnPixelsCompensated;

    m_cIMSC.reset();
    int len = m_cIMSC.m_nTotalSteps + 1;
    int i, c, step = 0;
    Point p = m_cIMSC.getPosition();
    int index = 0;
    ImageShape shape;
    Histogram hist;
    double mean, median;
    int y, y0 = 0;
    int pixel, nRef;
    double dsur;
    int numRings = m_cvRings.size();
    while (true) {
      p = m_cIMSC.getPosition();
      y = p.y;
      if (y > y0)
        IJ.showStatus(
            "refinePixelStatistics "
                + PrintAssist.ToString(y)
                + "-th line of "
                + PrintAssist.ToString(h)
                + " lines!");
      index = getPercentileIndex(step);
      dsur = m_pcRingMeanSems_Mean[index][m_nRMax].mean;
      ImageShapeHandler.copyElements(m_pnPixelsCompensated, m_pnPixelsTemp, m_cvRings, p);
      for (i = 0; i < numRings; i++) {
        pixel = (int) (m_pcRingMeanSems_Mean[index][i].mean - dsur);
        if (pixel < 1) break;
        shape = m_cvRings.get(i);
        shape.setCenter(p);
        ImageShapeHandler.addValue(m_pnPixelsTemp, shape, pixel);
      }
      nRef =
          (int) ImageShapeHandler.getMean(m_pnPixelsTemp, m_cRefRing, m_pnStamp, m_nExcludingType);
      CommonMethods.fillHistogram(
          m_pnPixelsTemp,
          nRef,
          m_cvRings.get(numRings - 1),
          p,
          m_cvHists.get(numRings - 1),
          m_pnStamp,
          m_nExcludingType);
      CommonMethods.fillHistograms(m_pnPixelsTemp, nRef, m_cvRings, p, m_cvHists);
      for (i = 0; i < numRings; i++) {
        hist = m_cvHists.get(i);
        mean = hist.getMeanSem().mean;
        median = hist.getPercentileValue();
        m_pdRingMean[step][i] = mean;
        m_pdRingMedian[step][i] = median;
      }
      //            m_pnPixels_trail[step]=m_pnPixelsTemp[p.y][p.x]-nRef;
      if (m_cIMSC.done()) break;
      m_cIMSC.move();
      step++;
    }
    for (c = 0; c < numRings; c++) {
      m_pcMeanSems_Median[c] = CommonStatisticsMethods.buildMeanSem(m_pdRingMedian, c);
      m_pcMeanSems_Mean[c] = CommonStatisticsMethods.buildMeanSem(m_pdRingMean, c);
    }
    if (m_bPresetPoints) {
      len = pixelsOfPresetPoints.size();
      int num = len / m_nPercentileDivision;
      int rI, rF;
      for (i = 0; i < m_nPercentileDivision; i++) {
        rI = Math.max(0, (int) ((i - .5) * num));
        rF = Math.min(len - 1, (int) ((i + .5) * num));
        for (c = 0; c < numRings; c++) {
          m_pcRingMeanSems_Median[i][c] =
              CommonStatisticsMethods.buildMeanSem(m_pdRingMedian, rI, rF, 1, c);
          m_pcRingMeanSems_Mean[i][c] =
              CommonStatisticsMethods.buildMeanSem(m_pdRingMean, rI, rF, 1, c);
        }
      }
    }
    m_pnPixels = pixelsTemp;
    return 1;
  }
예제 #8
0
  public void exportRingMeanSem(String path) {
    int r, c;
    int len = w * h;
    double[] pixels0 = new double[len];
    double[] pixelsr = new double[len];
    int numRings = m_cvRings.size();

    MeanSem0 pcMeanSems_MeanNR[] = new MeanSem0[numRings];
    MeanSem0 pcMeanSems_MedianNR[] = new MeanSem0[numRings];

    len = m_cIMSC.getTotalSteps() + 1;

    Point p;
    int pixel;
    int index = 0;
    while (true) {
      p = m_cIMSC.getPosition();
      if (m_bPresetPoints) {
        pixel = pixelsOfPresetPoints.get(index);
      }
      pixel = m_pnPixelsLR[p.y][p.x];
      for (c = 0; c < numRings; c++) {
        if (pixel == 0) {
          m_pdRingMedian[index][c] = pixel;
          m_pdRingMean[index][c] = pixel;
        } else {
          m_pdRingMedian[index][c] /= pixel;
          m_pdRingMean[index][c] /= pixel;
        }
      }
      if (m_cIMSC.done()) break;
      m_cIMSC.move();
      index++;
    }

    for (c = 0; c < numRings; c++) {
      pcMeanSems_MedianNR[c] = CommonStatisticsMethods.buildMeanSem(m_pdRingMedian, c);
      pcMeanSems_MeanNR[c] = CommonStatisticsMethods.buildMeanSem(m_pdRingMean, c);
    }

    Formatter fm = QuickFormatter.getFormatter(path);
    PrintAssist.printString(fm, "dist", 6);
    PrintAssist.printString(fm, "mean", 12);
    PrintAssist.printString(fm, "sem", 12);
    PrintAssist.printString(fm, "median", 12);
    PrintAssist.printString(fm, "sem", 12);
    PrintAssist.printString(fm, "meanNR", 12);
    PrintAssist.printString(fm, "semNR", 12);
    PrintAssist.printString(fm, "medianNR", 12);
    PrintAssist.printString(fm, "semNR", 12);
    PrintAssist.printString(fm, "num", 8);
    PrintAssist.endLine(fm);
    /*            PrintAssist.printNumber(fm, 0, 6, 0);
        PrintAssist.printNumber(fm, m_cPixelMeanSem_trail.mean, 12, 3);
        PrintAssist.printNumber(fm, m_cPixelMeanSem_trail.sem, 12, 4);
        PrintAssist.printNumber(fm, m_cPixelMeanSem_trail.mean, 12, 3);
        PrintAssist.printNumber(fm, m_cPixelMeanSem_trail.sem, 12, 4);
        PrintAssist.printNumber(fm, 1, 12, 4);
        PrintAssist.printNumber(fm, 0, 12, 4);
        PrintAssist.printNumber(fm, 1, 12, 4);
        PrintAssist.printNumber(fm, 0, 12, 4);
        PrintAssist.printNumber(fm, len, 8, 0);
    PrintAssist.endLine(fm);*/
    for (c = 0; c < numRings; c++) {
      PrintAssist.printNumber(fm, c + 1, 6, 0);
      PrintAssist.printNumber(fm, m_pcMeanSems_Mean[c].mean, 12, 3);
      PrintAssist.printNumber(fm, m_pcMeanSems_Mean[c].sem, 12, 4);
      PrintAssist.printNumber(fm, m_pcMeanSems_Median[c].mean, 12, 3);
      PrintAssist.printNumber(fm, m_pcMeanSems_Median[c].sem, 12, 4);
      PrintAssist.printNumber(fm, pcMeanSems_MeanNR[c].mean, 12, 4);
      PrintAssist.printNumber(fm, pcMeanSems_MeanNR[c].sem, 12, 4);
      PrintAssist.printNumber(fm, pcMeanSems_MedianNR[c].mean, 12, 4);
      PrintAssist.printNumber(fm, pcMeanSems_MedianNR[c].sem, 12, 4);
      PrintAssist.printNumber(fm, len, 8, 0);
      PrintAssist.endLine(fm);
    }
    fm.close();
    path = FileAssist.getExtendedFileName(path, " -all percentile");

    fm = QuickFormatter.getFormatter(path);
    int i;

    for (i = 0; i < m_nPercentileDivision; i++) {
      PrintAssist.printString(fm, "dist" + PrintAssist.ToString(i), 8);
      PrintAssist.printString(fm, "mean" + PrintAssist.ToString(i), 12);
      PrintAssist.printString(fm, "SD" + PrintAssist.ToString(i), 12);
      PrintAssist.printString(fm, "median" + PrintAssist.ToString(i), 12);
      PrintAssist.printString(fm, "SD" + PrintAssist.ToString(i), 12);
      /*
      PrintAssist.printString(fm, "meanNR"+PrintAssist.ToString(i), 12);
      PrintAssist.printString(fm, "semNR"+PrintAssist.ToString(i), 12);
      PrintAssist.printString(fm, "medianNR"+PrintAssist.ToString(i), 12);
      PrintAssist.printString(fm, "semNR"+PrintAssist.ToString(i), 12);
       *
       */
      PrintAssist.printString(fm, "num" + PrintAssist.ToString(i), 10);
    }
    PrintAssist.printString(fm, "dist", 8);
    PrintAssist.printString(fm, "meanAllPts", 12);
    PrintAssist.printString(fm, "SD_AllPts", 12);
    PrintAssist.printString(fm, "medianAPts", 12);
    PrintAssist.printString(fm, "SD_AllPts", 12);
    /*
    PrintAssist.printString(fm, "meanNR"+PrintAssist.ToString(i), 12);
    PrintAssist.printString(fm, "semNR"+PrintAssist.ToString(i), 12);
    PrintAssist.printString(fm, "medianNR"+PrintAssist.ToString(i), 12);
    PrintAssist.printString(fm, "semNR"+PrintAssist.ToString(i), 12);
     *
     */
    PrintAssist.printString(fm, "numAllPts", 10);

    PrintAssist.endLine(fm);
    /*
    for(i=0;i<m_nPercentileDivision;i++){
        PrintAssist.printNumber(fm, 0, 8, 0);
        PrintAssist.printNumber(fm, m_cPixelMeanSems_trail[i].mean, 12, 3);
        PrintAssist.printNumber(fm, m_cPixelMeanSems_trail[i].getSD(), 12, 4);
        PrintAssist.printNumber(fm, m_cPixelMeanSems_trail[i].mean, 12, 3);
        PrintAssist.printNumber(fm, m_cPixelMeanSems_trail[i].getSD(), 12, 4);
        /*
        PrintAssist.printNumber(fm, 1, 12, 4);
        PrintAssist.printNumber(fm, 0, 12, 4);
        PrintAssist.printNumber(fm, 1, 12, 4);
        PrintAssist.printNumber(fm, 0, 12, 4);
         *
         */
    /*            PrintAssist.printNumber(fm, m_cPixelMeanSems_trail[i].n, 10, 0);
    }
        PrintAssist.printNumber(fm, 0, 8, 0);
        PrintAssist.printNumber(fm, m_cPixelMeanSem_trail.mean, 12, 3);
        PrintAssist.printNumber(fm, m_cPixelMeanSem_trail.getSD(), 12, 4);
        PrintAssist.printNumber(fm, m_cPixelMeanSem_trail.mean, 12, 3);
        PrintAssist.printNumber(fm, m_cPixelMeanSem_trail.getSD(), 12, 4);
        /*
        PrintAssist.printNumber(fm, 1, 12, 4);
        PrintAssist.printNumber(fm, 0, 12, 4);
        PrintAssist.printNumber(fm, 1, 12, 4);
        PrintAssist.printNumber(fm, 0, 12, 4);
         *
         */
    //            PrintAssist.printNumber(fm, m_cPixelMeanSem_trail.n, 10, 0);
    //        PrintAssist.endLine(fm);
    for (c = 0; c < numRings; c++) {
      for (i = 0; i < m_nPercentileDivision; i++) {
        PrintAssist.printNumber(fm, m_dvRs.get(c), 8, 2);
        PrintAssist.printNumber(fm, m_pcRingMeanSems_Mean[i][c].mean, 12, 3);
        PrintAssist.printNumber(fm, m_pcRingMeanSems_Mean[i][c].getSD(), 12, 4);
        PrintAssist.printNumber(fm, m_pcRingMeanSems_Median[i][c].mean, 12, 3);
        PrintAssist.printNumber(fm, m_pcRingMeanSems_Median[i][c].getSD(), 12, 4);
        /*
        PrintAssist.printNumber(fm, pcMeanSems_MeanNR[c].mean, 12, 4);
        PrintAssist.printNumber(fm, pcMeanSems_MeanNR[c].sem, 12, 4);
        PrintAssist.printNumber(fm, pcMeanSems_MedianNR[c].mean, 12, 4);
        PrintAssist.printNumber(fm, pcMeanSems_MedianNR[c].sem, 12, 4);
         */
        PrintAssist.printNumber(fm, m_pcRingMeanSems_Mean[i][c].n, 10, 0);
      }
      PrintAssist.printNumber(fm, m_dvRs.get(c), 8, 0);
      PrintAssist.printNumber(fm, m_pcMeanSems_Mean[c].mean, 12, 3);
      PrintAssist.printNumber(fm, m_pcMeanSems_Mean[c].getSD(), 12, 4);
      PrintAssist.printNumber(fm, m_pcMeanSems_Median[c].mean, 12, 3);
      PrintAssist.printNumber(fm, m_pcMeanSems_Median[c].getSD(), 12, 4);
      /*
      PrintAssist.printNumber(fm, pcMeanSems_MeanNR[c].mean, 12, 4);
      PrintAssist.printNumber(fm, pcMeanSems_MeanNR[c].sem, 12, 4);
      PrintAssist.printNumber(fm, pcMeanSems_MedianNR[c].mean, 12, 4);
      PrintAssist.printNumber(fm, pcMeanSems_MedianNR[c].sem, 12, 4);
       */
      PrintAssist.printNumber(fm, m_pcMeanSems_Mean[c].n, 10, 0);
      PrintAssist.endLine(fm);
    }
    fm.close();
    path = FileAssist.getExtendedFileName(path, "all percentile");
  }
예제 #9
0
  public void calAutoCorrelation(
      int
          nRefType) { // computing the cross correlation coefficient between pixel values of points
                      // separated by the radius of rings
    m_nRefType = nRefType;
    int numRings = m_cvRings.size();
    calRefPixels();
    m_cPixelMeanSems = CommonStatisticsMethods.buildMeanSem(m_pnPixelsLR);
    int len;

    double mean = m_cPixelMeanSems.mean, sem2 = m_cPixelMeanSems.sem2;
    double medianMean[] = new double[numRings - 1];
    double medianSem2[] = new double[numRings - 1];

    double crossProduct[] = new double[numRings - 1];
    double numCrossPairs[] = new double[numRings - 1];
    double crossProduct_median[] = new double[numRings - 1];
    double numCrossPairs_median[] = new double[numRings - 1];

    ArrayList<Double> medians[] = new ArrayList[numRings - 1];
    int i, j, pixel0;

    for (i = 0; i < numRings - 1; i++) {
      crossProduct[i] = 0;
      numCrossPairs[i] = 0;
      crossProduct_median[i] = 0;
      numCrossPairs_median[i] = 0;
      medianMean[i] = 0;
      medianSem2[i] = 0;
      medians[i] = new ArrayList();
    }

    int[][] pixels_LMC = new int[h][w];

    ImageShape shape;
    ArrayList<Point> points = new ArrayList();
    ArrayList<Point> scanningTrace = new ArrayList();

    double dp, median;
    Point p0, p;
    int index = 0, y0 = 0, y;
    Histogram hist;
    int nRef, mean1;
    while (true) {
      p0 = new Point(m_cIMSC.getPosition());
      y = p0.y;
      scanningTrace.add(p0);
      pixel0 = m_pnPixelsLR[p0.y][p0.x];
      nRef = getRefPixel(p0);
      dp = pixel0 - mean;
      CommonMethods.fillHistograms(m_pnPixels, nRef, m_cvRings, p0, m_cvHists);
      for (i = 0; i < numRings - 1; i++) {
        shape = m_cvRings.get(i);
        shape.setCenter(p0);
        shape.setFrameRanges(
            new intRange(p0.x, w - 1),
            new intRange(
                p0.y,
                h - 1)); // this is to avoid double counting the pair of points with given distance
        shape.getInnerPoints(points);
        shape.setFrameRanges(new intRange(0, w - 1), new intRange(0, h - 1));
        len = points.size();
        for (j = 0; j < len; j++) {
          p = points.get(j);
          crossProduct[i] += dp * (m_pnPixels[p.y][p.x] - nRef - mean);
        }
        numCrossPairs[i] += len;

        numCrossPairs_median[i] += 1;

        hist = m_cvHists.get(i);
        median = hist.getPercentileValue();
        medianMean[i] += median;
        medianSem2[i] += median * median;
        medians[i].add(median);
        if (y > y0) {
          IJ.showStatus("computing autocorrelation: " + PrintAssist.ToString(y) + "-th line");
          IJ.showProgress(y / h);
          y0 = y;
        }
      }
      if (m_cIMSC.done()) break;
      m_cIMSC.move();
      index++;
    }
    double dAutoCorr_mean, meanMedian, cp;
    MeanSem0 ms = new MeanSem0();
    int num;
    for (i = 0; i < numRings - 1; i++) {
      m_pdAutoCorr_mean[i] = crossProduct[i] / (Math.sqrt(sem2 * sem2) * (numCrossPairs[i]));
      num = medians[i].size();
      medianMean[i] /= num;
      medianSem2[i] /= num;
      ms.updateMeanSquareSum(num, medianMean[i], medianSem2[i]);
      meanMedian = ms.mean;
      cp = 0;
      for (j = 0; j < num; j++) {
        p = scanningTrace.get(j);
        cp += (m_pnPixelsLR[p.y][p.x] - mean) * (medians[i].get(j) - meanMedian);
      }
      m_pdAutoCorr_median[i] = cp / (Math.sqrt(sem2 * ms.sem2) * (num));
    }
  }
예제 #10
0
  void calPixelStatistics() {
    calRefPixels();
    int len = m_cIMSC.m_nTotalSteps + 1;
    int numRings = m_cvRings.size();

    m_pdRingMean = new double[len][numRings];
    m_pdRingMedian = new double[len][numRings];

    int i, c;
    Point p = m_cIMSC.getPosition();
    int index = 0;
    //        ImageShape shape;
    Histogram hist;
    double mean, median;
    int y, y0 = 0;
    int nRef;
    while (true) {
      p = m_cIMSC.getPosition();
      y = p.y;
      if (y > y0)
        IJ.showStatus(
            "calPixelStatistics "
                + PrintAssist.ToString(y)
                + "-th line of "
                + PrintAssist.ToString(h)
                + " lines!");
      //            m_cRefRing.setCenter(p);
      nRef = getRefPixel(p);
      CommonMethods.fillHistograms(m_pnPixels, nRef, m_cvRings, p, m_cvHists);
      for (i = 0; i <= m_nRMax; i++) {
        hist = m_cvHists.get(i);
        mean = hist.getMeanSem().mean;
        median = hist.getPercentileValue();
        m_pdRingMean[index][i] = mean;
        m_pdRingMedian[index][i] = median;
      }
      if (m_cIMSC.done()) break;
      m_cIMSC.move();
      index++;
    }
    m_cPixelMeanSems = CommonStatisticsMethods.buildMeanSem(m_pnPixelsLR);
    //        m_cPixelMeanSem_trail=CommonStatisticsMethods.buildMeanSem(m_pnPixels_trail);
    for (c = 0; c <= m_nRMax; c++) {
      m_pcMeanSems_Median[c] = CommonStatisticsMethods.buildMeanSem(m_pdRingMedian, c);
      m_pcMeanSems_Mean[c] = CommonStatisticsMethods.buildMeanSem(m_pdRingMean, c);
    }
    if (m_bPresetPoints) {
      len = pixelsOfPresetPoints.size();
      int num = len / m_nPercentileDivision;
      int rI, rF;
      for (i = 0; i < m_nPercentileDivision; i++) {
        rI = Math.max(0, (int) ((i - .5) * num));
        rF = Math.min(len - 1, (int) ((i + .5) * num));
        //
        // m_cPixelMeanSems_trail[i]=CommonStatisticsMethods.buildMeanSem(m_pnPixels_trail,rI,rF,1);
        for (c = 0; c < numRings; c++) {
          m_pcRingMeanSems_Median[i][c] =
              CommonStatisticsMethods.buildMeanSem(m_pdRingMedian, rI, rF, 1, c);
          m_pcRingMeanSems_Mean[i][c] =
              CommonStatisticsMethods.buildMeanSem(m_pdRingMean, rI, rF, 1, c);
        }
      }
    }
  }