예제 #1
0
 private int rectCrossings(double x, double y, double w, double h) {
   int crossings = 0;
   if (!(getX1() == getX2() && getY1() == getY2())) {
     crossings =
         Curve.rectCrossingsForLine(
             crossings, x, y, x + w, y + h, getX1(), getY1(), getX2(), getY2());
     if (crossings == Curve.RECT_INTERSECTS) {
       return crossings;
     }
   }
   // we call this with the curve's direction reversed, because we wanted
   // to call rectCrossingsForLine first, because it's cheaper.
   return Curve.rectCrossingsForCubic(
       crossings,
       x,
       y,
       x + w,
       y + h,
       getX2(),
       getY2(),
       getCtrlX2(),
       getCtrlY2(),
       getCtrlX1(),
       getCtrlY1(),
       getX1(),
       getY1(),
       0);
 }
예제 #2
0
 /**
  * {@inheritDoc}
  *
  * @since 1.2
  */
 public boolean contains(double x, double y) {
   if (!(x * 0.0 + y * 0.0 == 0.0)) {
     /* Either x or y was infinite or NaN.
      * A NaN always produces a negative response to any test
      * and Infinity values cannot be "inside" any path so
      * they should return false as well.
      */
     return false;
   }
   // We count the "Y" crossings to determine if the point is
   // inside the curve bounded by its closing line.
   double x1 = getX1();
   double y1 = getY1();
   double x2 = getX2();
   double y2 = getY2();
   int crossings =
       (Curve.pointCrossingsForLine(x, y, x1, y1, x2, y2)
           + Curve.pointCrossingsForCubic(
               x, y, x1, y1, getCtrlX1(), getCtrlY1(), getCtrlX2(), getCtrlY2(), x2, y2, 0));
   return ((crossings & 1) == 1);
 }