예제 #1
0
 /**
  * Initialise a CTMain before usage with a first tree, going through and setting up the hash table
  * etc.
  *
  * @param root Root of the initial tree to initialise with
  * @param noOfSamples Current number of samples taken
  */
 public void initialize(TreeNode root, int noOfSamples) {
   // Parameter initialisation
   this.noOfSamples = noOfSamples;
   noOfTrees = 0;
   // TaxaMap initialisation
   List<TreeNode> leaves = root.getLeaves();
   noOfTaxa = leaves.size();
   // Hash initialisation
   hashUtils = new HashUtils();
   hashUtils.initialize(noOfTaxa, noOfSamples, C, seed);
   hashTable = new HashTable(hashUtils.m1);
   // Taxamap initialisation
   taxa = new TaxaMap(noOfTaxa);
   for (int i = 0; i < leaves.size(); i++) {
     taxa.put(leaves.get(i).name, i);
   }
   leafEdgeLengths = new double[noOfTaxa];
   // Adds a single star partition, once and for all.
   BitSet star = new BitSet(noOfTaxa);
   star.flip(0, noOfTaxa);
   HashEntry entry = new HashEntry(-1, star, 0.0d);
   entry.count = noOfSamples + 1;
   partitions.add(entry);
   // Majority threshold initialisation
   updateInterestThreshold();
 }
예제 #2
0
 /**
  * Create partitions from an input tree - recursive so will be called by many nodes, beginning
  * with root but with calculations actually beginning on leaves.
  *
  * @param partitions Partitions in the form of entries in the hash table
  * @param curInterestPercentage Current percentage of interest that we want splits to occur above
  *     to view in the network later
  */
 private ArrayList<Cluster> constructClusters(
     LinkedList<HashEntry> partitions, double curInterestPercentage) {
   ArrayList<Cluster> clusters = new ArrayList<Cluster>();
   // Thresholds for the current run of the cluster builder (c.f. the threshold for the partitions
   // list).
   double curInterestThreshold = (double) (noOfTrees * (curInterestPercentage / 100.0d));
   int majInterestThreshold = (int) (noOfTrees * (50.0 / 100.0d));
   for (Iterator<HashEntry> it = partitions.iterator(); it.hasNext(); ) {
     HashEntry entry = it.next();
     // Checks if this partition is still above threshold... partition.
     // If not: remove it - O(1).
     if ((double) entry.count <= curInterestThreshold) {
       // correct the isMajority flag to now refer to majority not if of interest or not..
       if (entry.count <= majInterestThreshold) {
         entry.isMajority = false;
       }
       it.remove();
       continue;
     }
     // Constructs clusters (list of TreeNode's for each set bit) from each partition.
     if ((double) entry.count > curInterestThreshold) {
       Cluster cluster = new Cluster();
       if (entry.count > majInterestThreshold) {
         cluster.isMajority = true;
       }
       cluster.aboveSplit = entry.partition;
       cluster.noOfOccurrences = entry.count;
       cluster.edgeLength = entry.edgeLengthsSum / entry.count;
       for (int i = 0; i < entry.partition.size(); i++) {
         if (entry.partition.get(i)) {
           TreeNode node = new TreeNode(taxa.getName(i));
           node.edgeLength = leafEdgeLengths[i] / noOfTrees;
           cluster.add(node);
         }
       }
       clusters.add(cluster);
     }
   }
   // Sort by number of taxa.
   // TODO: This might obviously be optimized a bit, e.g. with a PriorityQueue. - Eiriksson
   Collections.sort(clusters);
   return clusters;
 }
예제 #3
0
  /** Constructs the majorityTree. Used to make Network so remember to call this first! */
  public CTree constructMajorityTree() {
    int numOfNode = 0;
    CTree tree = new CTree();
    // Creates the clusters.
    tree.clusters = constructClusters(partitions, resPercentage);

    // Begins by constructing the star tree.

    for (TreeNode node : tree.clusters.get(0)) {
      TreeNode root = tree.getRoot(); // Retrieves the root,
      node.parent = root; // Parent of this node -> root.
      root.children.add(node); // Adds this node as the children of the root.
      tree.nodeList.add(node); // Adds this node to the list of nodes.
      assert tree.nodeList.get(0).name.equals("root");
      tree.parentList.put(node.name, 0); // Adds "this node -> root" parent mapping.
    }

    // Constructs internal nodes for the rest of the majority bi-partitions and rewires them.

    for (int z = 1; z < tree.clusters.size(); z++) {
      Cluster cluster = tree.clusters.get(z);
      // only take the majority ones....!
      if (cluster.isMajority == true) {

        // 1. Retrieves the parent of the first node in this cluster.
        TreeNode parent = tree.nodeList.get(tree.parentList.get(cluster.get(0).name));

        // 2. Constructs a new internal node.
        String nodeName = "int" + Integer.toString(numOfNode);
        TreeNode internalNode = new TreeNode(nodeName);
        internalNode.addProperty("noOfOccurrences", cluster.noOfOccurrences);
        internalNode.edgeLength = cluster.edgeLength;
        internalNode.parent = parent;

        // 3. Insert the new node into the node list.
        tree.nodeList.add(internalNode);
        assert tree.nodeList.get(tree.nodeList.size() - 1).name.equals(internalNode.name);
        tree.parentList.put(nodeName, tree.nodeList.size() - 1);

        // update the clusters node references...
        // (use a method of storing edges that referenced the positions in the Tree's nodelists for
        // reference later.)
        tree.clusters.get(z).nodeRefA = tree.parentList.get(cluster.get(0).name);
        tree.clusters.get(z).nodeRefB = (tree.nodeList.size() - 1);

        for (TreeNode node : cluster) {
          // 4. Makes this node the child of the new internal node.
          node.parent = internalNode;
          assert node.parent.name.equals(tree.nodeList.get(tree.nodeList.size() - 1).name);
          tree.parentList.put(node.name, tree.nodeList.size() - 1);
          internalNode.children.add(node);

          // 5. Delete the moved node(s) from the parent's children.
          // TODO: optimize? probably not.
          for (int i = 0; i < parent.children.size(); i++) {
            if (parent.children.get(i).name.equals(node.name)) {
              parent.children.remove(i);
              break;
            }
          }
        }
        // Wires up the internal node.
        parent.children.add(internalNode);
        numOfNode++;
      }
    }
    return tree;
  }
예제 #4
0
 /**
  * Create partitions from an input tree - recursive so will be called by many nodes, beginning
  * with root but with calculations actually beginning on leaves.
  *
  * @param node Node in tree with above split to add to the hash table
  */
 private BitSet createPartitions(TreeNode node) {
   if (node.isLeaf()) { // Leaf node.
     int index = taxa.get(node.name);
     // leaf simply has it's keys stored in the hash utilities
     node.addProperty("tableHashKey", hashUtils.a1[index]);
     node.addProperty("bucketHashKey", hashUtils.a2[index]);
     // Updates the edge length array.
     leafEdgeLengths[index] += node.edgeLength;
     // Create a new partition from scratch to represent it
     BitSet partition = new BitSet(noOfTaxa);
     partition.set(index);
     assert partition.cardinality() == 1 : "There should be exactly a single bit set.";
     return partition;
   } else { // An internal node: Traverses the tree in post order.
     BitSet partition = new BitSet(noOfTaxa);
     // Get the node's partition representation from its children
     List<TreeNode> children = node.children;
     for (TreeNode child : children) {
       partition.or(createPartitions(child));
     }
     // if this node is NOT to the right side of the root then add it... (Avoid adding splits twice
     // for CNetworks)
     if (node.parent != root || root.getRight() != node) {
       noOfPartitions++;
       long tableKey = 0;
       long bucketKey = 0;
       long tableKey2 = 0;
       long bucketKey2 = 0;
       // Calculate the hash keys for this partition
       for (TreeNode child : children) {
         tableKey += child.getIntProperty("tableHashKey");
         bucketKey += child.getIntProperty("bucketHashKey");
       }
       // if first is one then we need to store the flipped version so we store each split in one
       // representation only.
       if (partition.get(0) == true) {
         // copy to a new partition that is the flipped version
         BitSet partitionF = new BitSet(noOfTaxa);
         for (int l = 0; l < noOfTaxa; l++) {
           if (partition.get(l) == false) partitionF.set(l);
         }
         // calculate the hash keys for the flipped partition...
         for (int k = 0; k < noOfTaxa; k++) {
           if (partitionF.get(k) == true) {
             tableKey2 += hashUtils.a1[k];
             bucketKey2 += hashUtils.a2[k];
           }
         }
         // store the properties in the node
         node.addProperty("tableHashKey", (int) (tableKey2 % hashUtils.m1));
         node.addProperty("bucketHashKey", (int) (bucketKey2 % hashUtils.m2));
         if (noOfPartitions < noOfTaxa - 2) { // Avoids the addition of the star partition
           hashTable.put(
               partitionF,
               node.edgeLength,
               node.getIntProperty("tableHashKey"),
               node.getIntProperty("bucketHashKey"),
               interestThreshold,
               partitions);
         }
         // remember to still return the original partition with its appropriate keys...
         node.addProperty("tableHashKey", (int) (tableKey % hashUtils.m1));
         node.addProperty("bucketHashKey", (int) (bucketKey % hashUtils.m2));
         return partition;
       }
       // if first is zero then simply add the partition, recursively calculating the hash
       else {
         node.addProperty("tableHashKey", (int) (tableKey % hashUtils.m1));
         node.addProperty("bucketHashKey", (int) (bucketKey % hashUtils.m2));
         if (noOfPartitions < noOfTaxa - 2) { // Avoids the addition of the star partition
           hashTable.put(
               partition,
               node.edgeLength,
               node.getIntProperty("tableHashKey"),
               node.getIntProperty("bucketHashKey"),
               interestThreshold,
               partitions);
         }
         return partition;
       }
     }
     // still return the partition even if node was not added as was right of root...
     return partition;
   }
 }