public void moveTowards(GridPoint pt) { // only move if we are not already in this grid location if (!pt.equals(grid.getLocation(this))) { NdPoint myPoint = space.getLocation(this); NdPoint otherPoint = new NdPoint(pt.getX(), pt.getY()); double angle = SpatialMath.calcAngleFor2DMovement(space, myPoint, otherPoint); space.moveByVector(this, 1, angle, 0); myPoint = space.getLocation(this); grid.moveTo(this, (int) myPoint.getX(), (int) myPoint.getY()); moved = true; } }
/** * Returns true if a grid point of the map is free (with no car) * * @param p * @return */ private boolean isFree(GridPoint p) { int count = 0; Iterable<TrafficElement> elements = map.getObjectsAt(p.getX(), p.getY()); for (TrafficElement elem : elements) { count++; } return count == 0; }
/** Executes step method for each car and adds them to their new position */ private void moveCars() { this.carsToRemove.clear(); this.positionsToCheck.clear(); // Cars compute their new position for (Car car : travelingCars) car.move(); // Move cars in the map for (Car car : travelingCars) { int x = car.getX(); int y = car.getY(); // Move car if (!this.isPositionOutOfBounds(x, y)) { map.moveTo(car, x, y); this.addPositionToCheck(car.getPosition().getGridPoint()); } // Car moved out of the map. Add for removal else { this.addCarToRemove(car); } } // Remove cars out of bounds for (Car car : this.carsToRemove) { remove(car); } // Manage collisions for (String posId : this.positionsToCheck.keySet()) { GridPoint pos = this.positionsToCheck.get(posId); int x = pos.getX(); int y = pos.getY(); if (this.getNumElements(x, y) > 1) { Collision col = new Collision(x, y, map); Iterable<TrafficElement> elements = map.getObjectsAt(x, y); remove(elements); context.add(col); map.moveTo(col, x, y); this.collisions.add(col); } } }
public float[] getLocation(Object obj) { GridPoint gpoint = grid.getLocation(obj); int[] origin = grid.getDimensions().originToIntArray(null); float xOffset = (float) origin[0]; float yOffset = (float) origin[1]; if (gpoint == null) { point[0] = Float.POSITIVE_INFINITY; point[1] = Float.POSITIVE_INFINITY; return point; } float x = (float) (gpoint.getX() + xOffset) * cellSize; float y = (float) (gpoint.getY() + yOffset) * cellSize; point[0] = x; point[1] = y; return point; }
/** * @param x * @param y * @return */ private int getNumElements(int x, int y) { Iterable<TrafficElement> elements = map.getObjectsAt(x, y); int elemsCount = 0; Iterator<TrafficElement> iterator = elements.iterator(); while (iterator.hasNext()) { iterator.next(); elemsCount++; } return elemsCount; }
/** * Constructor * * @param context * @param grid * @param normLayer */ public CarMap_Original( Context<TrafficElement> context, Grid<TrafficElement> map, PredicatesDomains predDomains, CarContextFactory carContextFactory, TrafficFactFactory factFactory) { super(map.getDimensions().getHeight(), map.getDimensions().getWidth()); this.predDomains = predDomains; this.carContextFactory = carContextFactory; this.factFactory = factFactory; this.xDim = map.getDimensions().getWidth(); this.yDim = map.getDimensions().getHeight(); this.context = context; this.map = map; this.availableCars = new LinkedList<Car>(); this.travelingCars = new ArrayList<Car>(); this.allCars = new ArrayList<Car>(); this.carsToRemove = new ArrayList<Car>(); this.collisions = new ArrayList<Collision>(); this.collisionsToRemove = new ArrayList<Collision>(); this.positionsToCheck = new HashMap<String, GridPoint>(); this.leftLane = (int) (Math.floor(0.5 * xDim)) - 1; this.rightLane = leftLane + 2; this.lowerLane = (int) (Math.floor(0.5 * yDim)) - 1; this.upperLane = lowerLane + 2; this.startRow = 0; this.stopRow = yDim - 1; this.startCol = 0; this.stopCol = xDim - 1; this.generateCars(); }
public void infect() { GridPoint pt = grid.getLocation(this); List<Object> humans = new ArrayList<Object>(); for (Object obj : grid.getObjectsAt(pt.getX(), pt.getY())) { if (obj instanceof Human) { humans.add(obj); } } if (humans.size() > 0) { int index = RandomHelper.nextIntFromTo(0, humans.size() - 1); Object obj = humans.get(index); NdPoint spacePt = space.getLocation(obj); Context<Object> context = ContextUtils.getContext(obj); context.remove(obj); Zombie zombie = new Zombie(space, grid); context.add(zombie); space.moveTo(zombie, spacePt.getX(), spacePt.getY()); grid.moveTo(zombie, pt.getX(), pt.getY()); Network<Object> net = (Network<Object>) context.getProjection("infection network"); net.addEdge(this, zombie); } }
public GridPoint getQueueLocation(String name, Grid grid) { GridPoint queueLoc = null; QueueSim queueR = null; context = ContextUtils.getContext(this); for (Object o : context.getObjects(QueueSim.class)) { queueR = (QueueSim) o; if (queueR.getName() == name) { queueLoc = grid.getLocation(o); // System.out.println("**** "+ queueR.getId()+ " " // + queueLoc); break; } } return queueLoc; }
@ScheduledMethod(start = 1, interval = 1) public void step() { // get the grid location of this Zombie GridPoint pt = grid.getLocation(this); // use the GridCellNgh class to create GridCells for // the surrounding neighborhood . GridCellNgh<Human> nghCreator = new GridCellNgh<Human>(grid, pt, Human.class, 1, 1); List<GridCell<Human>> gridCells = nghCreator.getNeighborhood(true); SimUtilities.shuffle(gridCells, RandomHelper.getUniform()); GridPoint pointWithMostHumans = null; int maxCount = -1; for (GridCell<Human> cell : gridCells) { if (cell.size() > maxCount) { pointWithMostHumans = cell.getPoint(); maxCount = cell.size(); } } moveTowards(pointWithMostHumans); infect(); }
@ScheduledMethod(start = 1, interval = 1) public void step() { // create colNetwork in hosting context Context<Object> context = ContextUtils.getContext(this); Network<Object> colNet = (Network<Object>) context.getProjection("collaboration_network"); Network<Object> userNet = (Network<Object>) context.getProjection("user_network"); Network<Object> articleNet = (Network<Object>) context.getProjection("article_network"); if (!isDone) { /* * Neighbourhood Connection Algorithm */ // get the grid location of this User GridPoint pt = grid.getLocation(this); // use the GridCellNgh class to create GridCells for // the surrounding neighbourhood if (pt != null) { // TODO Why NULL? GridCellNgh<Article> nghCreator = new GridCellNgh<Article>( grid, pt, Article.class, neighbourDimensions, neighbourDimensions); List<GridCell<Article>> gridCells = nghCreator.getNeighborhood(false); SimUtilities.shuffle(gridCells, RandomHelper.getUniform()); // if an agent exist in the surrounding environment, add an edge with it. for (GridCell<Article> cell : gridCells) { if (cell.size() > 0) { List<Article> cellUsers = new ArrayList<Article>((Collection<Article>) cell.items()); articleToEdit = cellUsers.get((RandomHelper.nextIntFromTo(0, cellUsers.size() - 1))); if (context != null && colNet != null && cellUsers != null && articleToEdit != null) { if (!isActiveUser) { // Good Samaritan - one and only one connection if (colNet.getDegree(articleToEdit) <= 0 // if neighbour is unconnected && colNet.getDegree(this) <= 0) { // if our agent is unconnected) colNet.addEdge(this, articleToEdit); this.isDone = true; // this good samaritan is no longer counted in operating agents } } else if (!hasGeneralInterest) { // Project Leader zealot (active user), colNet.addEdge(this, articleToEdit); // connects neighbours in every step for (Object coopUser : colNet.getAdjacent(articleToEdit)) { if (coopUser != null && !userNet.containsEdge(userNet.getEdge(this, coopUser))) { userNet.addEdge(this, coopUser); } } for (Object relatedArticle : colNet.getAdjacent(this)) { if (relatedArticle != null && !articleNet.containsEdge(userNet.getEdge(articleToEdit, relatedArticle))) { articleNet.addEdge(articleToEdit, relatedArticle); } } } // For active agent connection algorithm we need to update good article array if found if (colNet.getDegree(articleToEdit) > (goodArticleMultiplier * colNet.getDegree() / colNet.size()) && colNet.getDegree(articleToEdit) > goodArticleConnectionCount && !articleToEdit.isGood) { articleToEdit.isGood = true; goodArticles.add(articleToEdit); } } break; } } } /* * Active Agent Connection Algorithm */ if (isActiveUser && hasGeneralInterest && goodArticles.size() > 0) { // if in administrator career path articleToEdit = goodArticles.get(RandomHelper.nextIntFromTo(0, goodArticles.size() - 1)); colNet.addEdge(this, articleToEdit); // TODO reduce goodArticles by one? for (Object coopUser : colNet.getAdjacent(articleToEdit)) { if (coopUser != null && !userNet.containsEdge(userNet.getEdge(this, coopUser))) { userNet.addEdge(this, coopUser); } } for (Object relatedArticle : colNet.getAdjacent(this)) { if (relatedArticle != null && !articleNet.containsEdge(userNet.getEdge(articleToEdit, relatedArticle))) { articleNet.addEdge(articleToEdit, relatedArticle); } } goodArticles.remove(0); } this.endRun(); } }
/** * Rain clouds appear with a certain chance, influenced by the weather For every rain cloud in the * grid the velocity of every rain object is updated Rain clouds are removed if they have passed a * certain time */ @ScheduledMethod(start = 1, interval = 1, priority = 0) public void rain() { // Let new raingroups appear with a certain chance double chance = SimulationParameters.rainProb; // The probability of rain appearing decreases if there is already rain in the grid if (noRainGroups == 1) chance = (chance / (noRainGroups)) * 0.5; if (noRainGroups == 2) chance = (chance / (noRainGroups)) * 0.1; if (noRainGroups > 2) chance = (chance / (noRainGroups)) * 0.01; double f = urng.nextDouble(); if (f < chance) { // Let rain appear int x = rand.nextInt((SimulationParameters.gridSize - 0) + 1); int y = rand.nextInt((SimulationParameters.gridSize - 0) + 1); int[] newLoc = {x, y}; // Let new raingroup appear in random location RainGroup rg = new RainGroup(ContextUtils.getContext(this), grid, newLoc); noRainGroups++; rainGroups.add(rg); } ArrayList<RainGroup> toRemove = new ArrayList<RainGroup>(); for (RainGroup rg : rainGroups) { // Get velocity vector of the rain float x = Wind.getWindVelocity().x; float y = Wind.getWindVelocity().y; Vector2 velRain = new Vector2(x, y); velRain.setLength( Wind.getWindVelocity().len() * 0.9f); // Rain speed is a bit lower than that of the wind List<Rain> toRemove1 = new ArrayList<Rain>(); // Let rain be carried by the wind if (urng.nextDouble() < velRain.len()) { for (Rain rain : rg.getRainObjects()) { Directions dir = Directions.fromVectorToDir(velRain); GridPoint pt = grid.getLocation(rain); int cX = pt.getX() + dir.xDiff; int cY = pt.getY() + dir.yDiff; // If new rain-location is out of borders, delete this rain object // In this way the cloud "travels" out of the grid if (cX < 0 || cX >= SimulationParameters.gridSize || cY < 0 || cY >= SimulationParameters.gridSize) { toRemove1.add(rain); } else grid.moveTo(rain, cX, cY); } } for (Rain r : toRemove1) { rg.removeRain(r); TreeBuilder.performance.decreaseRainCount(); } } // Remove the raingroups from our list which were removed from the context for (RainGroup rg : toRemove) { rainGroups.remove(rg); noRainGroups--; } }
public GridPoint getLoc() { loc = grid.getLocation(this); return loc; }
/** * Adds a car to the simulation * * @param car */ private void add(Car car) { travelingCars.add(car); context.add(car); map.moveTo(car, car.getX(), car.getY()); }