예제 #1
0
  @ScheduledMethod(start = 1, interval = 1)
  public void step() {
    // get the grid location of this Zombie
    GridPoint pt = grid.getLocation(this);

    // use the GridCellNgh class to create GridCells for
    // the surrounding neighborhood .
    GridCellNgh<Human> nghCreator = new GridCellNgh<Human>(grid, pt, Human.class, 1, 1);
    List<GridCell<Human>> gridCells = nghCreator.getNeighborhood(true);
    SimUtilities.shuffle(gridCells, RandomHelper.getUniform());

    GridPoint pointWithMostHumans = null;
    int maxCount = -1;
    for (GridCell<Human> cell : gridCells) {
      if (cell.size() > maxCount) {
        pointWithMostHumans = cell.getPoint();
        maxCount = cell.size();
      }
    }
    moveTowards(pointWithMostHumans);
    infect();
  }
  @ScheduledMethod(start = 1, interval = 1)
  public void step() {

    // create colNetwork in hosting context
    Context<Object> context = ContextUtils.getContext(this);
    Network<Object> colNet = (Network<Object>) context.getProjection("collaboration_network");
    Network<Object> userNet = (Network<Object>) context.getProjection("user_network");
    Network<Object> articleNet = (Network<Object>) context.getProjection("article_network");

    if (!isDone) {
      /*
       * Neighbourhood Connection Algorithm
       */
      // get the grid location of this User
      GridPoint pt = grid.getLocation(this);

      // use the GridCellNgh class to create GridCells for
      // the surrounding neighbourhood
      if (pt != null) { // TODO Why NULL?
        GridCellNgh<Article> nghCreator =
            new GridCellNgh<Article>(
                grid, pt, Article.class, neighbourDimensions, neighbourDimensions);
        List<GridCell<Article>> gridCells = nghCreator.getNeighborhood(false);
        SimUtilities.shuffle(gridCells, RandomHelper.getUniform());

        // if an agent exist in the surrounding environment, add an edge with it.
        for (GridCell<Article> cell : gridCells) {
          if (cell.size() > 0) {
            List<Article> cellUsers = new ArrayList<Article>((Collection<Article>) cell.items());
            articleToEdit = cellUsers.get((RandomHelper.nextIntFromTo(0, cellUsers.size() - 1)));
            if (context != null && colNet != null && cellUsers != null && articleToEdit != null) {
              if (!isActiveUser) { // Good Samaritan - one and only one connection
                if (colNet.getDegree(articleToEdit) <= 0 // if neighbour is unconnected
                    && colNet.getDegree(this) <= 0) { // if our agent is unconnected)
                  colNet.addEdge(this, articleToEdit);
                  this.isDone =
                      true; // this good samaritan is no longer counted in operating agents
                }
              } else if (!hasGeneralInterest) { // Project Leader zealot (active user),
                colNet.addEdge(this, articleToEdit); // connects neighbours in every step

                for (Object coopUser : colNet.getAdjacent(articleToEdit)) {
                  if (coopUser != null && !userNet.containsEdge(userNet.getEdge(this, coopUser))) {
                    userNet.addEdge(this, coopUser);
                  }
                }
                for (Object relatedArticle : colNet.getAdjacent(this)) {
                  if (relatedArticle != null
                      && !articleNet.containsEdge(userNet.getEdge(articleToEdit, relatedArticle))) {
                    articleNet.addEdge(articleToEdit, relatedArticle);
                  }
                }
              }

              // For active agent connection algorithm we need to update good article array if found
              if (colNet.getDegree(articleToEdit)
                      > (goodArticleMultiplier * colNet.getDegree() / colNet.size())
                  && colNet.getDegree(articleToEdit) > goodArticleConnectionCount
                  && !articleToEdit.isGood) {
                articleToEdit.isGood = true;
                goodArticles.add(articleToEdit);
              }
            }
            break;
          }
        }
      }

      /*
       * Active Agent Connection Algorithm
       */
      if (isActiveUser
          && hasGeneralInterest
          && goodArticles.size() > 0) { // if in administrator career path
        articleToEdit = goodArticles.get(RandomHelper.nextIntFromTo(0, goodArticles.size() - 1));
        colNet.addEdge(this, articleToEdit); // TODO reduce goodArticles by one?

        for (Object coopUser : colNet.getAdjacent(articleToEdit)) {
          if (coopUser != null && !userNet.containsEdge(userNet.getEdge(this, coopUser))) {
            userNet.addEdge(this, coopUser);
          }
        }
        for (Object relatedArticle : colNet.getAdjacent(this)) {
          if (relatedArticle != null
              && !articleNet.containsEdge(userNet.getEdge(articleToEdit, relatedArticle))) {
            articleNet.addEdge(articleToEdit, relatedArticle);
          }
        }
        goodArticles.remove(0);
      }

      this.endRun();
    }
  }
예제 #3
0
public class RainContext {

  private Grid<Object> grid;
  private int noRainGroups;
  private static final Uniform urng = RandomHelper.getUniform();
  Random rand = new Random();
  private ArrayList<RainGroup> rainGroups = new ArrayList<RainGroup>();
  private int strength;

  public RainContext(Grid<Object> grid) {
    this.grid = grid;
    this.noRainGroups = 0;
  }

  /**
   * Rain clouds appear with a certain chance, influenced by the weather For every rain cloud in the
   * grid the velocity of every rain object is updated Rain clouds are removed if they have passed a
   * certain time
   */
  @ScheduledMethod(start = 1, interval = 1, priority = 0)
  public void rain() {
    // Let new raingroups appear with a certain chance
    double chance = SimulationParameters.rainProb;
    // The probability of rain appearing decreases if there is already rain in the grid
    if (noRainGroups == 1) chance = (chance / (noRainGroups)) * 0.5;
    if (noRainGroups == 2) chance = (chance / (noRainGroups)) * 0.1;
    if (noRainGroups > 2) chance = (chance / (noRainGroups)) * 0.01;
    double f = urng.nextDouble();
    if (f < chance) {
      // Let rain appear
      int x = rand.nextInt((SimulationParameters.gridSize - 0) + 1);
      int y = rand.nextInt((SimulationParameters.gridSize - 0) + 1);
      int[] newLoc = {x, y};
      // Let new raingroup appear in random location
      RainGroup rg = new RainGroup(ContextUtils.getContext(this), grid, newLoc);
      noRainGroups++;
      rainGroups.add(rg);
    }

    ArrayList<RainGroup> toRemove = new ArrayList<RainGroup>();
    for (RainGroup rg : rainGroups) {
      // Get velocity vector of the rain
      float x = Wind.getWindVelocity().x;
      float y = Wind.getWindVelocity().y;
      Vector2 velRain = new Vector2(x, y);
      velRain.setLength(
          Wind.getWindVelocity().len() * 0.9f); // Rain speed is a bit lower than that of the wind

      List<Rain> toRemove1 = new ArrayList<Rain>();
      // Let rain be carried by the wind
      if (urng.nextDouble() < velRain.len()) {
        for (Rain rain : rg.getRainObjects()) {
          Directions dir = Directions.fromVectorToDir(velRain);
          GridPoint pt = grid.getLocation(rain);
          int cX = pt.getX() + dir.xDiff;
          int cY = pt.getY() + dir.yDiff;

          // If new rain-location is out of borders, delete this rain object
          // In this way the cloud "travels" out of the grid
          if (cX < 0
              || cX >= SimulationParameters.gridSize
              || cY < 0
              || cY >= SimulationParameters.gridSize) {
            toRemove1.add(rain);
          } else grid.moveTo(rain, cX, cY);
        }
      }

      for (Rain r : toRemove1) {
        rg.removeRain(r);
        TreeBuilder.performance.decreaseRainCount();
      }
    }

    // Remove the raingroups from our list which were removed from the context
    for (RainGroup rg : toRemove) {
      rainGroups.remove(rg);
      noRainGroups--;
    }
  }
}