/** * Runs the NSGA-II algorithm. * * @return a <code>SolutionSet</code> that is a set of non dominated solutions as a result of the * algorithm execution * @throws JMException */ @Test public Poblacion execute() throws JMException, ClassNotFoundException { int populationSize; int maxEvaluations; int evaluations; int probMutacion; int nrocaso; int corridas; int requiredEvaluations; // Use in the example of use of the // indicators object (see below) // Poblacion population; // SolutionSet population; Poblacion offspringPopulation; Poblacion union; Poblacion copyPopulation; Operator mutationOperator; Operator crossoverOperator; Operator selectionOperator; Distance distance = new Distance(); // Read the parameters populationSize = ((Integer) getInputParameter("populationSize")).intValue(); maxEvaluations = ((Integer) getInputParameter("maxEvaluations")).intValue(); probMutacion = ((Integer) getInputParameter("probMutacion")).intValue(); nrocaso = ((Integer) getInputParameter("nrocaso")).intValue(); corridas = ((Integer) getInputParameter("corridas")).intValue(); // Initialize the variables // population = new SolutionSet(populationSize); evaluations = 0; caso = casosDePrueba[nrocaso]; // Initialize Nsfnet NSFNET = em.find(Red.class, 1); // NSFnet NSFNET.inicializar(); long time_start, time_end = 0; // captura tiempo Inicial time_start = System.currentTimeMillis(); // 0. Obtener Poblacion Inicial this.obtenerPoblacion(populationSize); requiredEvaluations = 0; // Read the operators // mutationOperator = operators_.get("mutation"); // crossoverOperator = operators_.get("crossover"); // selectionOperator = operators_.get("selection"); OperadorSeleccion seleccionOp = new TorneoBinario(); // Create the initial solutionSet Solution newSolution; // population = new Poblacion(populationSize); for (int i = 0; i < populationSize; i++) { newSolution = new Solution(problem_); problem_.evaluate(newSolution); problem_.evaluateConstraints(newSolution); evaluations++; population.add(newSolution); } // for Ranking ranking = new Ranking(population); evaluations = 0; int cantIt = 0; int size, tamanho = 0; // Generations System.out.println(caso + "-" + corridas + " Test Genetico."); while (evaluations < tiempoTotal[nrocaso]) { size = population.getIndividuos().size(); tamanho = (size * size) + size; offspringPopulation = new Poblacion(populationSize * populationSize + populationSize); copyPopulation = new Poblacion(populationSize * populationSize + populationSize); // offspringPopulation.copiarPoblacion(population);; // for (int i = 0; i < (populationSize); i++) { if (evaluations < tiempoTotal[nrocaso]) { for (Individuo ind : population.getIndividuos()) { Solution s = (Solution) ind; s.setNumberOfObjectives(problem_.getNumberOfObjectives()); problem_.evaluate(s); // if (s.getCosto()<2.8) // System.out.println(s.getCosto()); if (s.getCosto() > 0) offspringPopulation.add(s); } Collection<Individuo> selectos = seleccionOp.seleccionar(population); population.cruzar(selectos, probMutacion); /*copyPopulation.copiarPoblacion(offspringPopulation); Poblacion mejores = getFront(copyPopulation); population.siguienteGeneracion(mejores);*/ population.siguienteGeneracion(); evaluations++; } // if // } // for for (Individuo ind : population.getIndividuos()) { Solution s = (Solution) ind; s.setNumberOfObjectives(problem_.getNumberOfObjectives()); problem_.evaluate(s); if (s.getCosto() > 0) offspringPopulation.add(s); } // Create the solutionSet union of solutionSet and offSpring // union = ((SolutionSet) population).union(offspringPopulation); union = offspringPopulation.union(population); // Ranking the union ranking = new Ranking(union); int remain = populationSize; int index = 0; Poblacion front = null; population.clear(); // Obtain the next front front = ranking.getSubfront(index); while (front != null && (remain > 0) && (remain >= front.size())) { // Assign crowding distance to individuals distance.crowdingDistanceAssignment(front, problem_.getNumberOfObjectives()); // Add the individuals of this front for (int k = 0; k < front.size(); k++) { population.add(front.get(k)); } // for // Decrement remain remain = remain - front.size(); // Obtain the next front index++; if (remain > 0) { front = ranking.getSubfront(index); } // if } // while if (front != null) { // Remain is less than front(index).size, insert only the best one if (remain > 0) { // front contains individuals to insert distance.crowdingDistanceAssignment(front, problem_.getNumberOfObjectives()); front.sort(new CrowdingComparator()); for (int k = 0; k < remain; k++) { population.add(front.get(k)); } // for } remain = 0; } // if // This piece of code shows how to use the indicator object into the code // of NSGA-II. In particular, it finds the number of evaluations required // by the algorithm to obtain a Pareto front with a hypervolume higher // than the hypervolume of the true Pareto front. /*if ((indicators != null) && (requiredEvaluations == 0)) { double HV = indicators.getHypervolume(population); if (HV >= (0.98 * indicators.getTrueParetoFrontHypervolume())) { requiredEvaluations = evaluations; } // if } // if*/ if (evaluations % maxEvaluations == 0) { System.out.println(); System.out.print("Población Nro: " + evaluations + " "); // System.out.println("MEJOR--> " + p.getMejor().toString()); System.out.print("Costo-MEJOR==> "); ranking = new Ranking(population); if (ranking.getSubfront(0) != null) { ranking.getSubfront(0).printParcialResults(); ranking.getSubfront(0).printVariablesToFile("VAR_p3" + "_" + caso); } // ((Solution) p.getMejor()).imprimirCosto(); } } // while cantIt++; // captura tiempo final // time_end = System.currentTimeMillis(); // Calculo del Tiempo /*long tiempo = time_end - time_start; long hora = tiempo / 3600000; long restohora = tiempo % 3600000; long minuto = restohora / 60000; long restominuto = restohora % 60000; long segundo = restominuto / 1000; long restosegundo = restominuto % 1000; String time = hora + ":" + minuto + ":" + segundo + "." + restosegundo; time = " Tiempo: " + time; String fin = caso + " FIN - Test Genetico. Tiempo:" + time; fin += " - Nº Generaciones: " + evaluations; System.out.println(fin); */ System.out.println("Evaluaciones: " + evaluations); // Return as output parameter the required evaluations setOutputParameter("evaluations", requiredEvaluations); // Return the first non-dominated front ranking = new Ranking(population); if (ranking.getSubfront(0) != null) ranking.getSubfront(0).printFeasibleFUN("FUN_NSGAII"); return ranking.getSubfront(0); } // execute
/* * Obtiene la población Inicial a partir de la Prueba cargada. */ private void obtenerPoblacion(int tamanho) { // 0. Obtener individuos Iniciales. Set<Individuo> individuos = this.obtenerPrueba(tamanho); // 1. Se crea la Poblacion Inicial con los individuos iniciales. population = new Poblacion(individuos, tamanho); // 2. Se carga la Red en la Poblacion. Poblacion.setRed(NSFNET); // 3. Se generan los caminos de la poblacion inicial. population.generarPoblacion(esquema); // 4. Se imprime la Poblacion Inicial // System.out.println(p.toString()); } // obtenerPoblacion
/** * @param args Command line arguments. * @throws JMException * @throws IOException * @throws SecurityException Usage: three options - jmetal.metaheuristics.nsgaII.NSGAII_main - * jmetal.metaheuristics.nsgaII.NSGAII_main problemName - * jmetal.metaheuristics.nsgaII.NSGAII_main problemName paretoFrontFile */ public static void main(String[] args) throws JMException, SecurityException, IOException, ClassNotFoundException { Problem problem; // The problem to solve Algorithm algorithm; // The algorithm to use Operator crossover; // Crossover operator Operator mutation; // Mutation operator Operator selection; // Selection operator HashMap parameters; // Operator parameters // Logger object and file to store log messages // logger_ = Configuration.logger_ ; fileHandler_ = new FileHandler("NSGAII_main.log"); // logger_.addHandler(fileHandler_) ; problem = new QOP(); int corridas; String caso; nrocaso = 0; Poblacion population = new Poblacion(50); while (nrocaso < casosDePrueba.length) { corridas = 1; long initTime2 = System.currentTimeMillis(); while (corridas < 11) { algorithm = new NSGAII_G10(problem, nrocaso); caso = casosDePrueba[nrocaso]; // algorithm = new ssNSGAII(problem); // Algorithm parameters algorithm.setInputParameter("populationSize", 5); algorithm.setInputParameter("maxEvaluations", 2500); algorithm.setInputParameter("probMutacion", 1); // 10% algorithm.setInputParameter("nrocaso", nrocaso); algorithm.setInputParameter("corridas", corridas); // Mutation and Crossover for Real codification /*parameters = new HashMap() ; parameters.put("probability", 0.9) ; parameters.put("distributionIndex", 20.0) ; crossover = CrossoverFactory.getCrossoverOperator("SBXCrossover", parameters); parameters = new HashMap() ; parameters.put("probability", 1.0/problem.getNumberOfVariables()) ; parameters.put("distributionIndex", 20.0) ; mutation = MutationFactory.getMutationOperator("PolynomialMutation", parameters); // Selection Operator parameters = null ; selection = SelectionFactory.getSelectionOperator("BinaryTournament2", parameters) ; */ // Add the operators to the algorithm /*algorithm.addOperator("crossover",crossover); algorithm.addOperator("mutation",mutation); algorithm.addOperator("selection",selection);*/ // algorithm.addOperator("torneobinario", torneobinario); // Add the indicator object to the algorithm // System.out.println(" "+corridas); // Execute the Algorithm long initTime = System.currentTimeMillis(); // System.out.println(caso + "-" + corridas + " Test Genetico."); population = algorithm.execute(); long estimatedTime = System.currentTimeMillis() - initTime; // Result messages if (population != null) { // logger_.info("Total execution time: "+estimatedTime + "ms"); // logger_.info("Variables values have been writen to file VAR"); population.printVariablesToFile("VAR_p3" + caso); // logger_.info("Objectives values have been writen to file FUN"); population.printObjectivesToFile("FUN_p3" + caso); } else { System.out.println("No arrojo resultados"); } /*if (indicators != null) { logger_.info("Quality indicators") ; logger_.info("Hypervolume: " + indicators.getHypervolume(population)) ; logger_.info("GD : " + indicators.getGD(population)) ; logger_.info("IGD : " + indicators.getIGD(population)) ; logger_.info("Spread : " + indicators.getSpread(population)) ; logger_.info("Epsilon : " + indicators.getEpsilon(population)) ; int evaluations = ((Integer)algorithm.getOutputParameter("evaluations")).intValue(); logger_.info("Speed : " + evaluations + " evaluations") ; } // if*/ corridas++; } long estimatedTime2 = System.currentTimeMillis() - initTime2; long tiempo = estimatedTime2; long hora = tiempo / 3600000; long restohora = tiempo % 3600000; long minuto = restohora / 60000; long restominuto = restohora % 60000; long segundo = restominuto / 1000; long restosegundo = restominuto % 1000; String time = hora + ":" + minuto + ":" + segundo + "." + restosegundo; time = " Tiempo: " + time; String fin = casosDePrueba[nrocaso] + " FIN - Test Genetico. Tiempo:" + time; // fin += " - Nº Generaciones: " + evaluations; System.out.println(fin); if (population != null) population.printFinalResults(); nrocaso++; } System.out.println("FIN Prueba Algoritmo Genetico. (Segment-Oriented)."); } // main
public Poblacion getFront(Poblacion population) { Ranking ranking = new Ranking(population); Distance distance = new Distance(); int remain = population.size(); int index = 0; Poblacion front = null; Poblacion poblacion = new Poblacion(population.size()); front = ranking.getSubfront(index); while (front != null && (remain > 0) && (remain >= front.size())) { // Assign crowding distance to individuals distance.crowdingDistanceAssignment(front, problem_.getNumberOfObjectives()); // Add the individuals of this front for (int k = 0; k < front.size(); k++) { poblacion.add(front.get(k)); } // for // Decrement remain remain = remain - front.size(); // Obtain the next front index++; if (remain > 0) { front = ranking.getSubfront(index); } // if } // while if (front != null) { // Remain is less than front(index).size, insert only the best one if (remain > 0) { // front contains individuals to insert distance.crowdingDistanceAssignment(front, problem_.getNumberOfObjectives()); front.sort(new CrowdingComparator()); for (int k = 0; k < remain; k++) { poblacion.add(front.get(k)); } // for } remain = 0; } // if return ranking.getSubfront(0); }