@Override public List<GraphPath> plan( String fromPlace, String toPlace, List<String> intermediates, Date targetTime, TraverseOptions options) { if (options.getModes().contains(TraverseMode.TRANSIT)) { throw new UnsupportedOperationException("TSP is not supported for transit trips"); } ArrayList<String> notFound = new ArrayList<String>(); Vertex fromVertex = getVertexForPlace(fromPlace, options); if (fromVertex == null) { notFound.add("from"); } Vertex toVertex = getVertexForPlace(toPlace, options); if (toVertex == null) { notFound.add("to"); } ArrayList<Vertex> intermediateVertices = new ArrayList<Vertex>(); int i = 0; for (String intermediate : intermediates) { Vertex vertex = getVertexForPlace(intermediate, options); if (vertex == null) { notFound.add("intermediate." + i); } else { intermediateVertices.add(vertex); } i += 1; } if (notFound.size() > 0) { throw new VertexNotFoundException(notFound); } if (_graphService.getCalendarService() != null) options.setCalendarService(_graphService.getCalendarService()); options.setTransferTable(_graphService.getGraph().getTransferTable()); GraphPath path = _routingService.route( fromVertex, toVertex, intermediateVertices, (int) (targetTime.getTime() / 1000), options); return Arrays.asList(path); }
/** * Get polygons covering the components of the graph. The largest component (in terms of number of * nodes) will not overlap any other components (it will have holes); the others may overlap each * other. * * @param modes * @return */ @Secured({"ROLE_USER"}) @GET @Path("/polygons") @Produces({MediaType.APPLICATION_JSON}) public GraphComponentPolygons getComponentPolygons( @DefaultValue("TRANSIT,WALK") @QueryParam("modes") TraverseModeSet modes, @QueryParam(RequestInf.DATE) String date, @QueryParam(RequestInf.TIME) String time, @DefaultValue("") @QueryParam(RequestInf.BANNED_ROUTES) String bannedRoutes) { TraverseOptions options = new TraverseOptions(modes); options.bannedRoutes = new HashSet<RouteSpec>(); if (bannedRoutes.length() > 0) { for (String element : bannedRoutes.split(",")) { String[] routeSpec = element.split("_", 2); if (routeSpec.length != 2) { throw new IllegalArgumentException("AgencyId or routeId not set in bannedRoutes list"); } options.bannedRoutes.add(new RouteSpec(routeSpec[0], routeSpec[1])); } } long dateTime = DateUtils.toDate(date, time).getTime(); if (cachedPolygons == null || dateTime != cachedDateTime || !options.equals(cachedOptions)) { cachedOptions = options; cachedDateTime = dateTime; Graph graph = graphService.getGraph(); if (graphService.getCalendarService() != null) { options.setCalendarService(graphService.getCalendarService()); } options.setServiceDays(dateTime, graph.getAgencyIds()); cachedPolygons = AnalysisUtils.getComponentPolygons(graph, options, dateTime); } GraphComponentPolygons out = new GraphComponentPolygons(); out.components = new ArrayList<GraphComponent>(); for (Geometry geometry : cachedPolygons) { GraphComponent component = new GraphComponent(); component.polygon = geometry; out.components.add(component); } return out; }
@Override public List<GraphPath> plan(State origin, Vertex target, int nItineraries) { Date targetTime = new Date(origin.getTime() * 1000); TraverseOptions options = origin.getOptions(); if (_graphService.getCalendarService() != null) options.setCalendarService(_graphService.getCalendarService()); options.setTransferTable(_graphService.getGraph().getTransferTable()); options.setServiceDays(targetTime.getTime() / 1000); if (options.getModes().getTransit() && !_graphService.getGraph().transitFeedCovers(targetTime)) { // user wants a path through the transit network, // but the date provided is outside those covered by the transit feed. throw new TransitTimesException(); } // decide which A* heuristic to use options.remainingWeightHeuristic = _remainingWeightHeuristicFactory.getInstanceForSearch(options, target); LOG.debug("Applied A* heuristic: {}", options.remainingWeightHeuristic); // If transit is not to be used, disable walk limit and only search for one itinerary. if (!options.getModes().getTransit()) { nItineraries = 1; options.setMaxWalkDistance(Double.MAX_VALUE); } ArrayList<GraphPath> paths = new ArrayList<GraphPath>(); // The list of options specifying various modes, banned routes, etc to try for multiple // itineraries Queue<TraverseOptions> optionQueue = new LinkedList<TraverseOptions>(); optionQueue.add(options); /* if the user wants to travel by transit, create a bus-only set of options */ if (options.getModes().getTrainish() && options.getModes().contains(TraverseMode.BUS)) { TraverseOptions busOnly = options.clone(); busOnly.setModes(options.getModes().clone()); busOnly.getModes().setTrainish(false); // Moved inside block to avoid double insertion in list ? (AMB) // optionQueue.add(busOnly); } double maxWeight = Double.MAX_VALUE; long maxTime = options.isArriveBy() ? 0 : Long.MAX_VALUE; while (paths.size() < nItineraries) { options = optionQueue.poll(); if (options == null) { break; } StateEditor editor = new StateEditor(origin, null); editor.setTraverseOptions(options); origin = editor.makeState(); // options.worstTime = maxTime; // options.maxWeight = maxWeight; long searchBeginTime = System.currentTimeMillis(); LOG.debug("BEGIN SEARCH"); List<GraphPath> somePaths = _routingService.route(origin, target); LOG.debug("END SEARCH {} msec", System.currentTimeMillis() - searchBeginTime); if (maxWeight == Double.MAX_VALUE) { /* * the worst trip we are willing to accept is at most twice as bad or twice as long. */ if (somePaths.isEmpty()) { // if there is no first path, there won't be any other paths return null; } GraphPath path = somePaths.get(0); long duration = path.getDuration(); LOG.debug("Setting max time and weight for subsequent searches."); LOG.debug("First path start time: {}", path.getStartTime()); maxTime = path.getStartTime() + MAX_TIME_FACTOR * (options.isArriveBy() ? -duration : duration); LOG.debug("First path duration: {}", duration); LOG.debug("Max time set to: {}", maxTime); maxWeight = path.getWeight() * MAX_WEIGHT_FACTOR; LOG.debug("Max weight set to: {}", maxWeight); } if (somePaths.isEmpty()) { LOG.debug("NO PATHS FOUND"); continue; } for (GraphPath path : somePaths) { if (!paths.contains(path)) { // DEBUG // path.dump(); paths.add(path); // now, create a list of options, one with each trip in this journey banned. LOG.debug("New trips: {}", path.getTrips()); TraverseOptions newOptions = options.clone(); for (AgencyAndId trip : path.getTrips()) { newOptions.bannedTrips.add(trip); } if (!optionQueue.contains(newOptions)) { optionQueue.add(newOptions); } /* * // now, create a list of options, one with each route in this trip banned. // * the HashSet banned is not strictly necessary as the optionsQueue will // * already remove duplicate options, but it might be slightly faster as // * hashing TraverseOptions is slow. LOG.debug("New routespecs: {}", * path.getRouteSpecs()); for (RouteSpec spec : path.getRouteSpecs()) { * TraverseOptions newOptions = options.clone(); * newOptions.bannedRoutes.add(spec); if (!optionQueue.contains(newOptions)) { * optionQueue.add(newOptions); } } */ } } LOG.debug("{} / {} itineraries", paths.size(), nItineraries); } if (paths.size() == 0) { return null; } // We order the list of returned paths by the time of arrival or departure (not path duration) Collections.sort(paths, new PathComparator(origin.getOptions().isArriveBy())); return paths; }
@Override public List<GraphPath> plan(State origin, Vertex target, int nItineraries) { TraverseOptions options = origin.getOptions(); if (_graphService.getCalendarService() != null) options.setCalendarService(_graphService.getCalendarService()); options.setTransferTable(_graphService.getGraph().getTransferTable()); options.setServiceDays(origin.getTime(), _graphService.getGraph().getAgencyIds()); if (options.getModes().getTransit() && !_graphService.getGraph().transitFeedCovers(new Date(origin.getTime() * 1000))) { // user wants a path through the transit network, // but the date provided is outside those covered by the transit feed. throw new TransitTimesException(); } // always use the bidirectional heuristic because the others are not precise enough RemainingWeightHeuristic heuristic = new BidirectionalRemainingWeightHeuristic(_graphService.getGraph()); // the states that will eventually be turned into paths and returned List<State> returnStates = new LinkedList<State>(); // Populate any extra edges final ExtraEdgesStrategy extraEdgesStrategy = options.extraEdgesStrategy; OverlayGraph extraEdges = new OverlayGraph(); extraEdgesStrategy.addEdgesFor(extraEdges, origin.getVertex()); extraEdgesStrategy.addEdgesFor(extraEdges, target); BinHeap<State> pq = new BinHeap<State>(); // List<State> boundingStates = new ArrayList<State>(); // initialize heuristic outside loop so table can be reused heuristic.computeInitialWeight(origin, target); // increase maxWalk repeatedly in case hard limiting is in use WALK: for (double maxWalk = options.getMaxWalkDistance(); maxWalk < 100000 && returnStates.isEmpty(); maxWalk *= 2) { LOG.debug("try search with max walk {}", maxWalk); // increase maxWalk if settings make trip impossible if (maxWalk < Math.min( origin.getVertex().distance(target), origin.getVertex().getDistanceToNearestTransitStop() + target.getDistanceToNearestTransitStop())) continue WALK; options.setMaxWalkDistance(maxWalk); // reinitialize states for each retry HashMap<Vertex, List<State>> states = new HashMap<Vertex, List<State>>(); pq.reset(); pq.insert(origin, 0); long startTime = System.currentTimeMillis(); long endTime = startTime + (int) (_timeouts[0] * 1000); LOG.debug("starttime {} endtime {}", startTime, endTime); QUEUE: while (!pq.empty()) { if (System.currentTimeMillis() > endTime) { LOG.debug("timeout at {} msec", System.currentTimeMillis() - startTime); if (returnStates.isEmpty()) continue WALK; else { storeMemory(); break WALK; } } State su = pq.extract_min(); // for (State bs : boundingStates) { // if (eDominates(bs, su)) { // continue QUEUE; // } // } Vertex u = su.getVertex(); if (traverseVisitor != null) { traverseVisitor.visitVertex(su); } if (u.equals(target)) { // boundingStates.add(su); returnStates.add(su); if (!options.getModes().getTransit()) break QUEUE; // options should contain max itineraries if (returnStates.size() >= _maxPaths) break QUEUE; if (returnStates.size() < _timeouts.length) { endTime = startTime + (int) (_timeouts[returnStates.size()] * 1000); LOG.debug( "{} path, set timeout to {}", returnStates.size(), _timeouts[returnStates.size()] * 1000); } continue QUEUE; } for (Edge e : u.getEdges(extraEdges, null, options.isArriveBy())) { STATE: for (State new_sv = e.traverse(su); new_sv != null; new_sv = new_sv.getNextResult()) { if (traverseVisitor != null) { traverseVisitor.visitEdge(e, new_sv); } double h = heuristic.computeForwardWeight(new_sv, target); // for (State bs : boundingStates) { // if (eDominates(bs, new_sv)) { // continue STATE; // } // } Vertex v = new_sv.getVertex(); List<State> old_states = states.get(v); if (old_states == null) { old_states = new LinkedList<State>(); states.put(v, old_states); } else { for (State old_sv : old_states) { if (eDominates(old_sv, new_sv)) { continue STATE; } } Iterator<State> iter = old_states.iterator(); while (iter.hasNext()) { State old_sv = iter.next(); if (eDominates(new_sv, old_sv)) { iter.remove(); } } } if (traverseVisitor != null) traverseVisitor.visitEnqueue(new_sv); old_states.add(new_sv); pq.insert(new_sv, new_sv.getWeight() + h); } } } } storeMemory(); // Make the states into paths and return them List<GraphPath> paths = new LinkedList<GraphPath>(); for (State s : returnStates) { LOG.debug(s.toStringVerbose()); paths.add(new GraphPath(s, true)); } // sort by arrival time, though paths are already in order of increasing difficulty // Collections.sort(paths, new PathComparator(origin.getOptions().isArriveBy())); return paths; }